0-pi-2-dx-1-tan-4-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 114699 by bemath last updated on 20/Sep/20 ∫π20dx1+tan4x? Commented by Dwaipayan Shikari last updated on 20/Sep/20 Answered by bobhans last updated on 20/Sep/20 replacingx=π2−xI=∫0π2−dx1+tan4(π2−x)I=∫π20dx1+cot4x=∫π20tan2xtan4x+1dx2I=∫π20sec2xtan4x+1dxI=12∫∞1dtt4+1;[t=tanx]setq=1+t4;t=(q−1)14I=12∫∞11q.14(q−1)−34dqI=18∫∞1q−12(q−1)−34dqI=18∫∞1q−54(1−q−1)−34dqI=18.Γ2(14)Γ(12)=18π.Γ2(14) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: xsin-n-xdx-Next Next post: calculation-n-1-2n-4-n-1-2-n-1-1-2-2n-k-1-1-k-2n-n-1-k-1-1-2k-2n-k-1-n-1-1-2k Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.