Menu Close

0-pi-2-dx-1-tan-4-x-




Question Number 114699 by bemath last updated on 20/Sep/20
  ∫_0 ^(π/2)  (dx/( (√(1+tan^4 x)))) ?
π20dx1+tan4x?
Commented by Dwaipayan Shikari last updated on 20/Sep/20
Answered by bobhans last updated on 20/Sep/20
replacing x = (π/2)−x  I=∫_(π/2) ^0  ((−dx)/( (√(1+tan^4 ((π/2)−x)))))  I=∫_0 ^(π/2)  (dx/( (√(1+cot^4 x)))) = ∫_0 ^(π/2)  ((tan^2 x)/( (√(tan^4 x+1))))dx  2I=∫_0 ^(π/2)  ((sec^2 x)/( (√(tan^4 x+1)))) dx   I=(1/2)∫_1 ^∞  (dt/( (√(t^4 +1)))) ; [ t = tan x ]  set q = 1+t^4  ; t = (q−1)^(1/4)   I=(1/2)∫_1 ^∞  (1/( (√q))).(1/4)(q−1)^(−(3/4))  dq  I=(1/8)∫_1 ^∞  q^(−(1/2)) (q−1)^(−(3/4))  dq  I= (1/( 8))∫_1 ^∞ q^(−(5/4)) (1−q^(−1) )^(−(3/4)) dq  I=(1/8).((Γ^2 ((1/4)))/(Γ((1/2)))) = (1/(8(√π))).Γ^2 ((1/4))
replacingx=π2xI=0π2dx1+tan4(π2x)I=π20dx1+cot4x=π20tan2xtan4x+1dx2I=π20sec2xtan4x+1dxI=121dtt4+1;[t=tanx]setq=1+t4;t=(q1)14I=1211q.14(q1)34dqI=181q12(q1)34dqI=181q54(1q1)34dqI=18.Γ2(14)Γ(12)=18π.Γ2(14)

Leave a Reply

Your email address will not be published. Required fields are marked *