Question Number 86313 by john santu last updated on 28/Mar/20
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}} \\ $$
Commented by john santu last updated on 28/Mar/20
$$\frac{\sqrt{\mathrm{sin}\:{x}}}{\:\sqrt{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}}\:+\:\frac{\sqrt{\mathrm{cos}\:{x}}}{\:\sqrt{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}}\:=\:\mathrm{1} \\ $$$${how}\:? \\ $$
Commented by john santu last updated on 28/Mar/20
$$\sqrt{\mathrm{cos}\:{x}}\:+\:\sqrt{\mathrm{sin}\:{x}}\:=\:\sqrt{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:? \\ $$
Answered by TANMAY PANACEA. last updated on 28/Mar/20
$${i}\:{think}… \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\frac{\sqrt{{sinx}}}{\:\sqrt{{cosx}}}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{cosx}}}{\:\sqrt{{sinx}}\:+\sqrt{{cosx}}}{dx} \\ $$$${using}\:\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{a}} {f}\left({a}−{x}\right){dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}}{\:\sqrt{{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}\:+\sqrt{{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{sinx}}}{\:\sqrt{{cosx}}\:+\sqrt{{sinx}}}{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{cosx}}}{\:\sqrt{{sinx}}\:+\sqrt{{cosx}}}+\frac{\sqrt{{sinx}}}{\:\sqrt{{cosx}}\:+\sqrt{{sinx}}}{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dx} \\ $$$${I}=\frac{\pi}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi}{\mathrm{4}} \\ $$
Commented by jagoll last updated on 28/Mar/20
$$\mathrm{king}\:\mathrm{formula} \\ $$
Commented by TANMAY PANACEA. last updated on 28/Mar/20
$${thank}\:{you}\:{sir} \\ $$
Commented by john santu last updated on 28/Mar/20
$$\mathrm{it}\:\mathrm{does}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{wrong}\:\mathrm{sir}? \\ $$
Commented by TawaTawa1 last updated on 28/Mar/20
$$\mathrm{Sir}\:\mathrm{tanmay},\:\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\:\mathrm{Q86324}. \\ $$
Answered by MJS last updated on 28/Mar/20
$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}\:\rightarrow\:{dx}=\mathrm{2cos}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$
Commented by jagoll last updated on 28/Mar/20
$$=\:\mathrm{2}\:\int\:\frac{\mathrm{dt}}{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$\mathrm{let}\:\mathrm{t}^{\mathrm{2}} −\mathrm{1}\:=\:\mathrm{tan}\:\mathrm{w}\Rightarrow\:\mathrm{2t}\:\mathrm{dt}\:=\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}\:\mathrm{dw} \\ $$$$=\:\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}\:\mathrm{dw}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}}\:=\:\mathrm{w}\:+\:\mathrm{c} \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)\:+\:\mathrm{c} \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:\left(\mathrm{x}\right)\right)\:+\:\mathrm{c} \\ $$$$\mathrm{it}\:\mathrm{correct}\:\mathrm{sir}? \\ $$
Commented by MJS last updated on 28/Mar/20
$$\mathrm{no} \\ $$$${w}=\mathrm{arctan}\:\left({t}^{\mathrm{2}} −\mathrm{1}\right)\:\rightarrow\:{dt}=\frac{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}}{\mathrm{2}{t}}{dw} \\ $$$$\Rightarrow\:\int\frac{{dw}}{\:\sqrt{\mathrm{1}+\mathrm{tan}\:{w}}}\:\mathrm{so}\:\mathrm{you}'\mathrm{re}\:\mathrm{back}\:\mathrm{at}\:\mathrm{the}\:\mathrm{start} \\ $$
Commented by MJS last updated on 28/Mar/20
$$\mathrm{we}\:\mathrm{must}\:\mathrm{decompose} \\ $$$$\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}}= \\ $$$$=\int\frac{{at}+{b}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}{t}+\sqrt{\mathrm{2}}}{dt}+\int\frac{{ct}+{d}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}{t}+\sqrt{\mathrm{2}}}}{dt}= \\ $$$$=−\frac{\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}}}}{\mathrm{2}}\int\frac{{t}−\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}{t}+\sqrt{\mathrm{2}}}{dt}+\frac{\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}}}}{\mathrm{2}}\int\frac{{t}+\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}{t}+\sqrt{\mathrm{2}}}{dt} \\ $$$$\mathrm{now}\:\mathrm{use}\:\mathrm{formula} \\ $$
Commented by jagoll last updated on 28/Mar/20
$$\mathrm{waw}…\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{try}\:\mathrm{solve}\:\mathrm{it} \\ $$