Menu Close

0-pi-2-dx-1-tan-x-




Question Number 86313 by john santu last updated on 28/Mar/20
∫_0 ^(π/2)  (dx/( (√(1+tan x))))
π20dx1+tanx
Commented by john santu last updated on 28/Mar/20
((√(sin x))/( (√(sin x+cos x)))) + ((√(cos x))/( (√(sin x+cos x)))) = 1  how ?
sinxsinx+cosx+cosxsinx+cosx=1how?
Commented by john santu last updated on 28/Mar/20
(√(cos x)) + (√(sin x)) = (√(sin x+cos x)) ?
cosx+sinx=sinx+cosx?
Answered by TANMAY PANACEA. last updated on 28/Mar/20
i think...  ∫_0 ^(π/2) (dx/(1+((√(sinx))/( (√(cosx))))))=∫_0 ^(π/2) ((√(cosx))/( (√(sinx)) +(√(cosx))))dx  using ∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx  I=∫_0 ^(π/2) ((√(cos((π/2)−x)))/( (√(sin((π/2)−x))) +(√(cos((π/2)−x)))))dx  =∫_0 ^(π/2) ((√(sinx))/( (√(cosx)) +(√(sinx))))dx  2I=∫_0 ^(π/2) ((√(cosx))/( (√(sinx)) +(√(cosx))))+((√(sinx))/( (√(cosx)) +(√(sinx))))dx  2I=∫_0 ^(π/2) dx  I=(π/2)×(1/2)=(π/4)
ithink0π2dx1+sinxcosx=0π2cosxsinx+cosxdxusing0af(x)dx=0af(ax)dxI=0π2cos(π2x)sin(π2x)+cos(π2x)dx=0π2sinxcosx+sinxdx2I=0π2cosxsinx+cosx+sinxcosx+sinxdx2I=0π2dxI=π2×12=π4
Commented by jagoll last updated on 28/Mar/20
king formula
kingformula
Commented by TANMAY PANACEA. last updated on 28/Mar/20
thank you sir
thankyousir
Commented by john santu last updated on 28/Mar/20
it does mean the equation wrong sir?
itdoesmeantheequationwrongsir?
Commented by TawaTawa1 last updated on 28/Mar/20
Sir tanmay, please help with  Q86324.
Sirtanmay,pleasehelpwithQ86324.
Answered by MJS last updated on 28/Mar/20
∫(dx/( (√(1+tan x))))=       [t=(√(1+tan x)) → dx=2cos^2  x (√(1+tan x))dt]  =2∫(dt/(t^4 −2t^2 +2))  and now it′s easy
dx1+tanx=[t=1+tanxdx=2cos2x1+tanxdt]=2dtt42t2+2andnowitseasy
Commented by jagoll last updated on 28/Mar/20
= 2 ∫ (dt/((t^2 −1)^2 +1))   let t^2 −1 = tan w⇒ 2t dt = sec^2 w dw  = ∫ ((sec^2 w dw)/(sec^2 w)) = w + c  = tan^(−1) (t^2 −1) + c  = tan^(−1) (tan (x)) + c  it correct sir?
=2dt(t21)2+1lett21=tanw2tdt=sec2wdw=sec2wdwsec2w=w+c=tan1(t21)+c=tan1(tan(x))+citcorrectsir?
Commented by MJS last updated on 28/Mar/20
no  w=arctan (t^2 −1) → dt=((t^4 −2t^3 +2)/(2t))dw  ⇒ ∫(dw/( (√(1+tan w)))) so you′re back at the start
now=arctan(t21)dt=t42t3+22tdwdw1+tanwsoyourebackatthestart
Commented by MJS last updated on 28/Mar/20
we must decompose  2∫(dt/(t^4 −2t^2 +2))=  =∫((at+b)/(t^2 −(√(2+2(√2)))t+(√2)))dt+∫((ct+d)/(t^2 +(√(2+2(√2)t+(√2)))))dt=  =−((√(−1+(√2)))/2)∫((t−(√(2+2(√2))))/(t^2 −(√(2+2(√2)))t+(√2)))dt+((√(−1+(√2)))/2)∫((t+(√(2+2(√2))))/(t^2 +(√(2+(√2)))t+(√2)))dt  now use formula
wemustdecompose2dtt42t2+2==at+bt22+22t+2dt+ct+dt2+2+22t+2dt==1+22t2+22t22+22t+2dt+1+22t+2+22t2+2+2t+2dtnowuseformula
Commented by jagoll last updated on 28/Mar/20
waw...yes sir. i try solve it
wawyessir.itrysolveit

Leave a Reply

Your email address will not be published. Required fields are marked *