Menu Close

0-pi-2-dx-1-tan-x-




Question Number 155686 by john_santu last updated on 03/Oct/21
  ∫_0 ^(π/2) (dx/(1+tan x)) =?
0π/2dx1+tanx=?
Answered by peter frank last updated on 03/Oct/21
∫_0 ^(π/2) ((cos x)/(cos x+sin x))dx  by t−substitution  cos x=((1−t^2 )/(1+t^2 ))  sin x=((2t)/(1+t^2 ))  t=tan (x/2)
0π2cosxcosx+sinxdxbytsubstitutioncosx=1t21+t2sinx=2t1+t2t=tanx2
Answered by puissant last updated on 03/Oct/21
Q=∫_0 ^(π/2) (dx/(1+tan x))  ; x=(π/2)−u → dx=−du  ⇒ Q=∫_(π/2) ^0 (((−du))/(1+tan((π/2)−u)))=∫_0 ^(π/2) (du/(1+(1/(tanu))))  = ∫_0 ^(π/2) ((tan u)/(1+tan u))du = ∫_0 ^(π/2) ((1+tan u −1)/(1+tan u))du  ⇒ 2Q=∫_0 ^(π/2) du ⇒ Q=(1/2)×(π/2)=(π/4)..            ∴∵   Q = ∫_0 ^(π/2) (dx/(1+tan x)) = (π/4)...
Q=0π2dx1+tanx;x=π2udx=duQ=π20(du)1+tan(π2u)=0π2du1+1tanu=0π2tanu1+tanudu=0π21+tanu11+tanudu2Q=0π2duQ=12×π2=π4..∴∵Q=0π2dx1+tanx=π4

Leave a Reply

Your email address will not be published. Required fields are marked *