Menu Close

0-pi-2-dx-2-cos-x-




Question Number 160597 by cortano last updated on 03/Dec/21
   ∫_0 ^( (π/2))  (dx/(2−cos x)) =?
0π2dx2cosx=?
Answered by Mathspace last updated on 03/Dec/21
I=∫_0 ^(π/2)  (dx/(2−cosx)) we do the changement  tan((x/2))=t ⇒I=∫_0 ^1   ((2dt)/((1+t^2 )(2−((1−t^2 )/(1+t^2 )))))  =2∫_0 ^1   (dt/(2+2t^2 −1+t^2 ))=2∫_0 ^1  (dt/(3t^2 +1))  =_((√3)t=u)   2∫_0 ^(√3)   (du/( (√3)(1+u^2 )))  =(2/( (√3)))[arctanu]_0 ^(√3)  =(2/( (√3)))arctan((√3))
I=0π2dx2cosxwedothechangementtan(x2)=tI=012dt(1+t2)(21t21+t2)=201dt2+2t21+t2=201dt3t2+1=3t=u203du3(1+u2)=23[arctanu]03=23arctan(3)
Commented by cortano last updated on 03/Dec/21
yes....
yes.

Leave a Reply

Your email address will not be published. Required fields are marked *