0-pi-2-dx-97-sin-2-x-Hypergeometric-form- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 129185 by Dwaipayan Shikari last updated on 13/Jan/21 ∫0π2dx97+sin2xHypergeometricform Commented by Dwaipayan Shikari last updated on 13/Jan/21 Ihavefoundπ2972F1(12,12;1;−197) Commented by Dwaipayan Shikari last updated on 13/Jan/21 197∫0π2dx1−(−197sin2x)k2=−197=197∫0π211−k2sin2xdx=197∑∞n=0(12)nn!∫0π2k2nsin2nxdx=197∑∞n=0(12)nn!k2n∫0π2sin2nxdx=1297∑∞n=0(12)nn!k2n.Γ(n+12)Γ(12)Γ(n+1)=π297∑∞n=0(12)n2Γ(12)(1)nn!(k2)n=π2972F1(12,12;1;k2)=π2972F1(12,12;1;−197)Γ(n+12)=Γ(12)(12)n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: n-integr-natural-prove-that-5-divide-n-5-n-Next Next post: Question-129187 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.