Menu Close

0-pi-2-dx-97-sin-2-x-Hypergeometric-form-




Question Number 129185 by Dwaipayan Shikari last updated on 13/Jan/21
∫_0 ^(π/2) (dx/( (√(97+sin^2 x))))  Hypergeometric form
0π2dx97+sin2xHypergeometricform
Commented by Dwaipayan Shikari last updated on 13/Jan/21
I have found (π/(2(√(97))))  _2 F_1 ((1/2),(1/2);1;−(1/(97)))
Ihavefoundπ2972F1(12,12;1;197)
Commented by Dwaipayan Shikari last updated on 13/Jan/21
(1/( (√(97))))∫_0 ^(π/2) (dx/( (√(1−(−(1/(97))sin^2 x)))))                 k^2 =−(1/(97))  =(1/( (√(97))))∫_0 ^(π/2) (1/( (√(1−k^2 sin^2 x))))dx                 =(1/( (√(97))))Σ_(n=0) ^∞ ((((1/2))_n )/(n!))∫_0 ^(π/2) k^(2n) sin^(2n) x dx=(1/( (√(97))))Σ_(n=0) ^∞ ((((1/2))_n )/(n!))k^(2n) ∫_0 ^(π/2) sin^(2n) x dx  =(1/( 2(√(97))))Σ_(n=0) ^∞ ((((1/2))_n )/(n!))k^(2n) .((Γ(n+(1/2))Γ((1/2)))/(Γ(n+1)))=((√π)/( 2(√(97))))Σ_(n=0) ^∞ ((((1/2))_n ^2 Γ((1/2)))/((1)_n n!))(k^2 )^n   =(π/( 2(√(97)))) _2 F_1 ((1/2),(1/2);1;k^2 )=(π/(2 (√(97)))) _2 F_1 ((1/2),(1/2);1;−(1/(97)))  Γ(n+(1/2))=Γ((1/2))((1/2))_n
1970π2dx1(197sin2x)k2=197=1970π211k2sin2xdx=197n=0(12)nn!0π2k2nsin2nxdx=197n=0(12)nn!k2n0π2sin2nxdx=1297n=0(12)nn!k2n.Γ(n+12)Γ(12)Γ(n+1)=π297n=0(12)n2Γ(12)(1)nn!(k2)n=π2972F1(12,12;1;k2)=π2972F1(12,12;1;197)Γ(n+12)=Γ(12)(12)n

Leave a Reply

Your email address will not be published. Required fields are marked *