Menu Close

0-pi-2-dx-sin-x-




Question Number 42945 by ajfour last updated on 05/Sep/18
∫_0 ^(  π/2) (dx/( (√(sin x)))) = ?
0π/2dxsinx=?
Commented by MJS last updated on 05/Sep/18
this can′t be solved with elementar methods,  it leads to an elliptic integral, you can find  info on the web
thiscantbesolvedwithelementarmethods,itleadstoanellipticintegral,youcanfindinfoontheweb
Commented by tannhattnnt28 last updated on 05/Sep/18
not
not
Commented by MJS last updated on 05/Sep/18
not???
not???
Commented by ajfour last updated on 05/Sep/18
if it is within indicated limits ?
ifitiswithinindicatedlimits?
Commented by ajfour last updated on 05/Sep/18
Commented by ajfour last updated on 05/Sep/18
If a rod pivoted at one end be  released in horizontal position,  find the time it takes to swing  down; (assume frictionless  bearings).
Ifarodpivotedatoneendbereleasedinhorizontalposition,findthetimeittakestoswingdown;(assumefrictionlessbearings).
Commented by ajfour last updated on 05/Sep/18
here is where i encounter above  integral, if i am not mislead..
hereiswhereiencounteraboveintegral,ifiamnotmislead..
Commented by maxmathsup by imad last updated on 05/Sep/18
changement tan((x/2))=t give   I = ∫_0 ^1      (1/( (√((2t)/(1+t^2 ))))) ((2dt)/(1+t^2 )) = ∫_0 ^1      ((2dt)/( (√(2t))(√(1+t^2 ))))dt =(√2)∫_0 ^1    (dt/( (√t)(√(1+t^2 ))))  =_(t =sh(u))   (√2)∫_0 ^(ln(1+(√2)))     ((ch(u)du)/( (√(sh(u)))ch(u))) =(√2) ∫_0 ^(ln(1+(√2)))    (du/( (√(shu)))) ...i think this integral  can t besolved by elementary function and if you have a try post it...
changementtan(x2)=tgiveI=0112t1+t22dt1+t2=012dt2t1+t2dt=201dtt1+t2=t=sh(u)20ln(1+2)ch(u)dush(u)ch(u)=20ln(1+2)dushuithinkthisintegralcantbesolvedbyelementaryfunctionandifyouhaveatrypostit
Commented by ajfour last updated on 05/Sep/18
α=(τ/I) = ((mg(l/2)cos θ)/((ml^2 )/3)) = ((3gcos θ)/(2l))  ∫_0 ^(  𝛚) 𝛚d𝛚 = ((3g)/(2l))sin 𝛉  ⇒  𝛚 =(d𝛉/dt) = (√((3gsin 𝛉)/l))  ⇒  t = (√((l/(3g)) ))∫_0 ^(  𝛑/2) (d𝛉/( (√(sin 𝛉))))    t ≈ 2.64(√(l/(3g))) .
α=τI=mgl2cosθml23=3gcosθ2l0ωωdω=3g2lsinθω=dθdt=3gsinθlt=l3g0π/2dθsinθt2.64l3g.
Commented by maxmathsup by imad last updated on 05/Sep/18
changement  tan((x/2))=t give  ∫_0 ^1     (1/( (√((2t)/(1+t^2 ))))) ((2dt)/(1+t^2 ))  = 2  ∫_0 ^1    (dt/( (√(2t))(√(1+t^2 )))) =(√2)∫_0 ^1    (dt/( (√t)(√(1+t^2 ))))  but we have  (1+u)^α  =1+(α/(1!)) u  +((α(α−1))/(2!)) u^2   + ((α(α−1)....(α−n+1))/(n!)) u^n  +...⇒  (√(1+t^2 ))=(1+t^2 )^(−(1/2))  =1−(1/2)t^2  +(((−(1/2))(−(1/2)−1))/2) t^4  +...  =1−(t^2 /2)  +(3/8) t^4  +...⇒(1/( (√t)(√(1+t^2 )))) = t^(−(1/2)) {1−(t^2 /2) +(3/8)t^4  +....}  =t^(−(1/2))  −(t^(3/2) /2) +(3/8) t^(7/2)  +....⇒∫_0 ^1   (dt/( (√t)(√(1+t^2 )))) = ∫_0 ^1  t^(−(1/2))  dt −(1/2) ∫_0 ^1  t^(3/2) dt +(3/8) ∫_0 ^1  t^(7/2)  dt+...  =[2(√t)]_0 ^1   −(1/2)[ (1/((3/2)+1)) t^((3/2)+1) ]_0 ^1  +(3/8)[ (1/((7/2)+1)) t^((7/2)+1) ]_0 ^1  −...  =2 −(1/2) (2/5) +(3/8) (2/9) +....=2−(1/5) + (1/(12)) −...⇒  ∫_0 ^(π/2)   (dx/( (√(sinx)))) = (√2){ 2−(1/5) +(1/(12)) +....} ∼ 2(√2) −((√2)/5) +((√2)/(12)) .
changementtan(x2)=tgive0112t1+t22dt1+t2=201dt2t1+t2=201dtt1+t2butwehave(1+u)α=1+α1!u+α(α1)2!u2+α(α1).(αn+1)n!un+1+t2=(1+t2)12=112t2+(12)(121)2t4+=1t22+38t4+1t1+t2=t12{1t22+38t4+.}=t12t322+38t72+.01dtt1+t2=01t12dt1201t32dt+3801t72dt+=[2t]0112[132+1t32+1]01+38[172+1t72+1]01=21225+3829+.=215+1120π2dxsinx=2{215+112+.}2225+212.
Commented by maxmathsup by imad last updated on 05/Sep/18
(1/( (√(1+t^2 )))) =(1+t^2 )^(−(1/2))  =....
11+t2=(1+t2)12=.
Commented by maxmathsup by imad last updated on 05/Sep/18
2(√2) −((√2)/5) +((√2)/(12)) ∼2×1,41 −((1,41)/5) +((1,41)/(12)) = 2,65 ⇒ ∫_0 ^(π/2)   (dx/( (√(sinx)))) ∼ 2,65 .
2225+2122×1,411,415+1,4112=2,650π2dxsinx2,65.
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Sep/18
using gamma beta function    ∫_0 ^(Π/2) sin^((−1)/2) x cos^0 x  dx  ∫_0 ^(Π/2) sin^(2p−1) xcos^(2q−1) xdx=((⌈(p)⌈(q))/(2⌈(p+q)))  here 2p−1=((−1)/2)    2p=(1/2)    p=(1/4)  2q−1=0  q=(1/2)  so ans is =((⌈((1/4)) ×⌈((1/2)))/(2⌈((1/4)+(1/2))))  =((⌈((1/4)) ×⌈((1/2)))/(2⌈((3/4))))  =((⌈((1/4)) ×⌈((1/4)) ×(√Π))/(2×⌈((1/4))×⌈(1−(1/4))))  formula ⌈(p)⌈(1−p)=(Π/(sin(pΠ)))  ⌈((1/4))×⌈(1−(1/4))=(Π/(sin((Π/4))))=Π×(√2)   =((⌈((1/4))×⌈((1/4))×(√Π))/(2×Π×(√2)))=  =((3.6×3.6×(√(3.14)))/(2×1.41×3.14))≈2.64
usinggammabetafunction0Π2sin12xcos0xdx0Π2sin2p1xcos2q1xdx=(p)(q)2(p+q)here2p1=122p=12p=142q1=0q=12soansis=(14)×(12)2(14+12)=(14)×(12)2(34)=(14)×(14)×Π2×(14)×(114)formula(p)(1p)=Πsin(pΠ)(14)×(114)=Πsin(Π4)=Π×2=(14)×(14)×Π2×Π×2==3.6×3.6×3.142×1.41×3.142.64
Commented by ajfour last updated on 05/Sep/18
let me take some time to recap  beta and gamma functions and  see if i can understand your  solution; thanks a lot Sir.
letmetakesometimetorecapbetaandgammafunctionsandseeificanunderstandyoursolution;thanksalotSir.
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Sep/18
Commented by ajfour last updated on 05/Sep/18
excellent sir, thanks again!
excellentsir,thanksagain!
Commented by MJS last updated on 06/Sep/18
found something else:  Γ^2 ((1/4))=2(√(2π))ϖ ⇒ ∫_0 ^(π/2) (dx/( (√(sin x))))=ϖ  ϖ=(π/(M(1, (√2))))=the lemniscate constant    a_(n+1) =((a_n +b_n )/2)  b_(n+1) =(√(a_n b_n ))  lim_(n→∞) a_n =lim_(n→∞) b_n =M(a_0 , b_0 )=the arithmetic−geometric mean of a_0  and b_0   both converge very fast, after 3 steps the  mistake is only ≈1.7×10^(−8)   M(1; (√2))≈1.198140235  ϖ=(π/(M(1, (√2))))≈2.622057554    btw.:  ∫_0 ^(π/2) (√(sin x))dx=((2π)/ϖ)≈2.396280469
foundsomethingelse:Γ2(14)=22πϖπ20dxsinx=ϖϖ=πM(1,2)=thelemniscateconstantan+1=an+bn2bn+1=anbnlimnan=limnbn=M(a0,b0)=thearithmeticgeometricmeanofa0andb0bothconvergeveryfast,after3stepsthemistakeisonly1.7×108M(1;2)1.198140235ϖ=πM(1,2)2.622057554btw.:π20sinxdx=2πϖ2.396280469
Commented by ajfour last updated on 06/Sep/18
great hunting Sir, thanks for  sharing.
greathuntingSir,thanksforsharing.
Commented by Necxx last updated on 19/Sep/18
hmmm
hmmm
Answered by MJS last updated on 05/Sep/18
∫_0 ^(π/2) (dx/( (√(sin x))))≈2.62206  approximately calculated by my TI−89 calculator
π20dxsinx2.62206approximatelycalculatedbymyTI89calculator
Commented by MJS last updated on 05/Sep/18
his answer is right but it′s not easy to  calculate the values of Γ(x) too. my calculator  says, these values are questionable  so if you have got a table of these values, good.  I haven′t got one
hisanswerisrightbutitsnoteasytocalculatethevaluesofΓ(x)too.mycalculatorsays,thesevaluesarequestionablesoifyouhavegotatableofthesevalues,good.Ihaventgotone
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Sep/18
sir your answer is right sir...
siryouranswerisrightsir
Commented by malwaan last updated on 06/Sep/18
TI−89  Is it apk ?
TI89Isitapk?
Commented by MJS last updated on 06/Sep/18
it is a device
itisadevice
Commented by Joel578 last updated on 06/Sep/18
scientific calculator
scientificcalculator

Leave a Reply

Your email address will not be published. Required fields are marked *