0-pi-2-e-2x-tanx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 147060 by ArielVyny last updated on 17/Jul/21 ∫0π2e2xtanxdx Answered by mathmax by abdo last updated on 17/Jul/21 Ψ=∫0π2e2xtanxdxchangementtanx=zgivex=arctan(z2)Ψ=∫0∞e2arctan(z2)z×2z1+z4dz=2∫0∞z2e2arctan(z2)1+z4dzφ(z)=z2e2arctan(z2)z4+1⇒φ(z)=z2e2arctan(z2)(z2−i)(z2+i)=z2e2arctan(z2)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)wecanuserdsidusbutthiswayisnotsure…!∫Rφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=ie2arctan(i)2eiπ4(2i)=14e−iπ4e2arctan(i)Res(φ,−e−iπ4)=(−i)e2arctan(−i)−2e−iπ4(−2i)=−14eiπ4e2arctan(−i)⇒∫−∞+∞φ(z)dz=iπ2{e−iπ4.e2arctan(i)+eiπ4e2arctan(−i)}…becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-81523Next Next post: 0-x-a-1-x-3-dx-x-0-lt-a-lt-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.