Question Number 147060 by ArielVyny last updated on 17/Jul/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{\mathrm{2}{x}} \sqrt{{tanx}}{dx} \\ $$
Answered by mathmax by abdo last updated on 17/Jul/21
$$\Psi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \:\mathrm{e}^{\mathrm{2x}} \sqrt{\mathrm{tanx}}\mathrm{dx}\:\:\mathrm{changement}\:\sqrt{\mathrm{tanx}}=\mathrm{z}\:\mathrm{give}\:\mathrm{x}=\mathrm{arctan}\left(\mathrm{z}^{\mathrm{2}} \right) \\ $$$$\Psi=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\mathrm{2arctan}\left(\mathrm{z}^{\mathrm{2}} \right)} \mathrm{z}\:×\frac{\mathrm{2z}}{\mathrm{1}+\mathrm{z}^{\mathrm{4}} }\mathrm{dz}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{2arctan}\left(\mathrm{z}^{\mathrm{2}} \right)} }{\mathrm{1}+\mathrm{z}^{\mathrm{4}} }\mathrm{dz} \\ $$$$\varphi\left(\mathrm{z}\right)=\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{2arctan}\left(\mathrm{z}^{\mathrm{2}} \right)} }{\mathrm{z}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow\varphi\left(\mathrm{z}\right)=\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{2arctan}\left(\mathrm{z}^{\mathrm{2}} \right)} }{\left(\mathrm{z}^{\mathrm{2}} −\mathrm{i}\right)\left(\mathrm{z}^{\mathrm{2}} \:+\mathrm{i}\right)} \\ $$$$=\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{2arctan}\left(\mathrm{z}^{\mathrm{2}} \right)} }{\left(\mathrm{z}−\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{z}+\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{z}−\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{z}+\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)}\:\:\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{rdsidus} \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{way}\:\mathrm{is}\:\mathrm{not}\:\mathrm{sure}…! \\ $$$$\int_{\mathrm{R}} \varphi\left(\mathrm{z}\right)\mathrm{dz}=\mathrm{2i}\pi\left\{\mathrm{Res}\left(\varphi\:,\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\:+\mathrm{Res}\left(\varphi,−\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$$\mathrm{Res}\left(\varphi,\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\:=\frac{\mathrm{ie}^{\mathrm{2arctan}\left(\mathrm{i}\right)} }{\mathrm{2e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \left(\mathrm{2i}\right)}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \mathrm{e}^{\mathrm{2arctan}\left(\mathrm{i}\right)} \\ $$$$\mathrm{Res}\left(\varphi,−\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\:=\frac{\left(−\mathrm{i}\right)\mathrm{e}^{\mathrm{2arctan}\left(−\mathrm{i}\right)} }{−\mathrm{2e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \left(−\mathrm{2i}\right)}=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \:\mathrm{e}^{\mathrm{2arctan}\left(−\mathrm{i}\right)} \\ $$$$\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left(\mathrm{z}\right)\mathrm{dz}=\frac{\mathrm{i}\pi}{\mathrm{2}}\left\{\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} .\mathrm{e}^{\mathrm{2arctan}\left(\mathrm{i}\right)} \:+\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \:\mathrm{e}^{\mathrm{2arctan}\left(−\mathrm{i}\right)} \right\} \\ $$$$…\mathrm{be}\:\mathrm{continued}…. \\ $$