Menu Close

0-pi-2-e-2x-tanx-dx-




Question Number 147060 by ArielVyny last updated on 17/Jul/21
∫_0 ^(π/2) e^(2x) (√(tanx))dx
0π2e2xtanxdx
Answered by mathmax by abdo last updated on 17/Jul/21
Ψ=∫_0 ^(π/(2 ))  e^(2x) (√(tanx))dx  changement (√(tanx))=z give x=arctan(z^2 )  Ψ=∫_0 ^∞  e^(2arctan(z^2 )) z ×((2z)/(1+z^4 ))dz =2∫_0 ^∞  ((z^2  e^(2arctan(z^2 )) )/(1+z^4 ))dz  ϕ(z)=((z^2  e^(2arctan(z^2 )) )/(z^4  +1)) ⇒ϕ(z)=((z^2  e^(2arctan(z^2 )) )/((z^2 −i)(z^2  +i)))  =((z^2  e^(2arctan(z^2 )) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  we can use rdsidus  but this way is not sure...!  ∫_R ϕ(z)dz=2iπ{Res(ϕ ,e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =((ie^(2arctan(i)) )/(2e^((iπ)/4) (2i)))=(1/4)e^(−((iπ)/4)) e^(2arctan(i))   Res(ϕ,−e^(−((iπ)/4)) ) =(((−i)e^(2arctan(−i)) )/(−2e^(−((iπ)/4)) (−2i)))=−(1/4)e^((iπ)/4)  e^(2arctan(−i))   ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=((iπ)/2){e^(−((iπ)/4)) .e^(2arctan(i))  +e^((iπ)/4)  e^(2arctan(−i)) }  ...be continued....
Ψ=0π2e2xtanxdxchangementtanx=zgivex=arctan(z2)Ψ=0e2arctan(z2)z×2z1+z4dz=20z2e2arctan(z2)1+z4dzφ(z)=z2e2arctan(z2)z4+1φ(z)=z2e2arctan(z2)(z2i)(z2+i)=z2e2arctan(z2)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)wecanuserdsidusbutthiswayisnotsure!Rφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=ie2arctan(i)2eiπ4(2i)=14eiπ4e2arctan(i)Res(φ,eiπ4)=(i)e2arctan(i)2eiπ4(2i)=14eiπ4e2arctan(i)+φ(z)dz=iπ2{eiπ4.e2arctan(i)+eiπ4e2arctan(i)}becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *