Menu Close

0-pi-2-e-sec-2-d-




Question Number 100026 by Ar Brandon last updated on 24/Jun/20
∫_0 ^(π/2) e^(−sec^2 θ) dθ
0π2esec2θdθ
Answered by mathmax by abdo last updated on 24/Jun/20
I =∫_0 ^(π/(2 ))  e^(−(1/(cos^2 θ)))   dθ    we have 1+tan^2 θ =(1/(cos^2 θ)) ⇒ I =∫_0 ^(π/2)  e^(−(1+tan^2 θ))  dθ  changement tanθ =x  give I =∫_0 ^∞   e^(−(1+x^2 ))  (dx/(1+x^2 ))  = ∫_0 ^∞   (e^(−(1+x^2 )) /(1+x^2 ))dx  let f(a) =∫_0 ^∞   (e^(−a(1+x^2 )) /(1+x^2 ))dx     (a>0) ⇒  f^′ (a) =−∫_0 ^∞  e^(−a(1+x^2 )) dx =−e^(−a)  ∫_0 ^∞  e^(−ax^2 ) dx =_(x(√a)=u)   −e^(−a)  ∫_0 ^∞  e^(−u^2 ) (du/( (√a)))  =−(e^(−a) /( (√a))) ∫_0 ^∞  e^(−u^2 )  du =−((√π)/2) ×(e^(−a) /( (√a))) ⇒f(a) =−((√π)/2) ∫_0 ^a  (e^(−t) /( (√t)))dt +c  =_((√t)=α)  −((√π)/2) ∫_0 ^(√a)  (e^(−α^2 ) /α)(2α)dα +c =−(√π)∫_0 ^(√a)  e^(−α^2 ) dα +c  c=lim_(a→0)   f(a) =(π/2) ⇒f(a) =(π/2)−(√π)∫_0 ^(√a) e^(−α^2 )  dα ⇒  I =f(1) =(π/2)−(√π)∫_0 ^1  e^(−α^2 ) dα  but e^(−α^2 )  =Σ_(n=0) ^∞  (((−α^2 )^n )/(n!)) =Σ_(n=0) ^∞  (((−1)^n )/(n!)) α^(2n)  ⇒  I =(π/2)−(√π)Σ_(n=0) ^∞  (((−1)^n )/(n!)) ∫_0 ^1  α^(2n)  dα  I=(π/2)−(√π)Σ_(n=0) ^∞  (((−1)^n )/((2n+1)(n!)))
I=0π2e1cos2θdθwehave1+tan2θ=1cos2θI=0π2e(1+tan2θ)dθchangementtanθ=xgiveI=0e(1+x2)dx1+x2=0e(1+x2)1+x2dxletf(a)=0ea(1+x2)1+x2dx(a>0)f(a)=0ea(1+x2)dx=ea0eax2dx=xa=uea0eu2dua=eaa0eu2du=π2×eaaf(a)=π20aettdt+c=t=απ20aeα2α(2α)dα+c=π0aeα2dα+cc=lima0f(a)=π2f(a)=π2π0aeα2dαI=f(1)=π2π01eα2dαbuteα2=n=0(α2)nn!=n=0(1)nn!α2nI=π2πn=0(1)nn!01α2ndαI=π2πn=0(1)n(2n+1)(n!)
Commented by Ar Brandon last updated on 24/Jun/20
wow ! thank you
Commented by mathmax by abdo last updated on 24/Jun/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *