Menu Close

0-pi-2-e-x-cosxdx-




Question Number 145776 by Engr_Jidda last updated on 08/Jul/21
∫_0 ^(π/2) e^x cosxdx
0π2excosxdx
Answered by ArielVyny last updated on 08/Jul/21
I=∫_0 ^(π/2) e^x cosxdx  du=e^x →u=e^x   v=cosx→dv=−sinx  I=[e^x cosx]_0 ^(π/2) +J  (J=∫_0 ^(π/2) e^x sinxdx)  J=[e^x sinx]_0 ^(π/2) −I   { ((I−J=−1)),((I+J=e^(π/2) )) :}  2I=e^(π/2) −1→I=((e^(π/2) −1)/2)
I=0π2excosxdxdu=exu=exv=cosxdv=sinxI=[excosx]0π2+J(J=0π2exsinxdx)J=[exsinx]0π2I{IJ=1I+J=eπ22I=eπ21I=eπ212
Answered by mathmax by abdo last updated on 08/Jul/21
∫_0 ^(π/2)  e^x  cosx dx =Re(∫_0 ^(π/2)  e^(x+ix) dx)=Re(∫_0 ^(π/2)  e^((1+i)x) dx) and  ∫_0 ^(π/2)  e^((1+i)x)  dx =[(1/(1+i))e^((1+i)x) ]_0 ^(π/2)  =(1/(1+i))(e^((1+i)(π/2)) −1)  =((1−i)/2)(i e^(π/2) −1) =((ie^(π/2) −1+e^(π/2)  +i)/2) =((e^(π/2) −1)/2)+i(...) ⇒  ∫_0 ^(π/2)  e^x cosxdx=((e^(π/2) −1)/2)
0π2excosxdx=Re(0π2ex+ixdx)=Re(0π2e(1+i)xdx)and0π2e(1+i)xdx=[11+ie(1+i)x]0π2=11+i(e(1+i)π21)=1i2(ieπ21)=ieπ21+eπ2+i2=eπ212+i()0π2excosxdx=eπ212

Leave a Reply

Your email address will not be published. Required fields are marked *