0-pi-2-ln-2-1-sin-t-1-sin-t-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 154080 by iloveisrael last updated on 14/Sep/21 Ω=∫0π2ln2(1+sint1−sint)dt Answered by mindispower last updated on 14/Sep/21 =∫0π24ln2(1+tg(x2)1−tg(x2))dxy=tg(x2)⇒dx=2dy1+y2=8∫01ln2(1−y1+y)1+y2dyy=1−x1+x⇒dy=−2dx(1+x)2Ω=8∫01ln2(x)1+(1−x1+x)2.2dx(1+x)2=8∫01ln2(x)1+x2dx=8∫01∑n⩾0(−x2)nln2(x)dx=8∑n⩾0(−1)n∫01x2nln2(x)dx∫01x2nln2(x)dx=∫0∞t2e−(2n+1)tdt1(2n+1)3∫0∞t2e−t=2(1+2n)3Ω=16∑n⩾0(−1)n(1+2n)3=16∑n⩾0(1(1+4n)3−1(4n+3)3)=1664∑n⩾0(1(n+14)3−1(n+34)3)=1664(Ψ3(14)−Ψ3(34)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-for-0-lt-a-lt-2-0-x-a-1-dx-1-x-x-2-2pi-3-cos-2pia-pi-6-cosec-pia-Next Next post: Question-23012 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.