Menu Close

0-pi-2-ln-2-1-sin-t-1-sin-t-dt-




Question Number 154080 by iloveisrael last updated on 14/Sep/21
    Ω =∫_0 ^( (π/2)) ln^2 (((1+sin t)/(1−sin t)))dt
Ω=0π2ln2(1+sint1sint)dt
Answered by mindispower last updated on 14/Sep/21
=∫_0 ^(π/2) 4ln^2 (((1+tg((x/2)))/(1−tg((x/2)))))dx  y=tg((x/2))⇒dx=((2dy)/(1+y^2 ))  =8∫_0 ^1 ((ln^2 (((1−y)/(1+y))))/(1+y^2 ))dy  y=((1−x)/(1+x))⇒dy=((−2dx)/((1+x)^2 ))  Ω=8∫_0 ^1 ((ln^2 (x))/(1+(((1−x)/(1+x)))^2 )).((2dx)/((1+x)^2 ))=8∫_0 ^1 ((ln^2 (x))/(1+x^2 ))dx  =8∫_0 ^1 Σ_(n≥0) (−x^2 )^n ln^2 (x)dx  =8Σ_(n≥0) (−1)^n ∫_0 ^1 x^(2n) ln^2 (x)dx  ∫_0 ^1 x^(2n) ln^2 (x)dx=∫_0 ^∞ t^2 e^(−(2n+1)t) dt  (1/((2n+1)^3 ))∫_0 ^∞ t^2 e^(−t) =(2/((1+2n)^3 ))  Ω=16Σ_(n≥0) (((−1)^n )/((1+2n)^3 ))  =16Σ_(n≥0) ((1/((1+4n)^3 ))−(1/((4n+3)^3 )))  =((16)/(64))Σ_(n≥0) ((1/((n+(1/4))^3 ))−(1/((n+(3/4))^3 )))  =((16)/(64))(Ψ^3 ((1/4))−Ψ^3 ((3/4)))
=0π24ln2(1+tg(x2)1tg(x2))dxy=tg(x2)dx=2dy1+y2=801ln2(1y1+y)1+y2dyy=1x1+xdy=2dx(1+x)2Ω=801ln2(x)1+(1x1+x)2.2dx(1+x)2=801ln2(x)1+x2dx=801n0(x2)nln2(x)dx=8n0(1)n01x2nln2(x)dx01x2nln2(x)dx=0t2e(2n+1)tdt1(2n+1)30t2et=2(1+2n)3Ω=16n0(1)n(1+2n)3=16n0(1(1+4n)31(4n+3)3)=1664n0(1(n+14)31(n+34)3)=1664(Ψ3(14)Ψ3(34))

Leave a Reply

Your email address will not be published. Required fields are marked *