Menu Close

0-pi-2-ln-2-sinx-dx-




Question Number 113821 by 675480065 last updated on 15/Sep/20
∫_0 ^(π/2) ln(2−sinx)dx
0π2ln(2sinx)dx
Commented by Dwaipayan Shikari last updated on 15/Sep/20
I(a)=∫_0 ^(π/2) log(2+asinx)dx  I′(a)=∫_0 ^(π/2) ((sinx)/(2+asinx))dx  I′(a)=(1/a)∫_0 ^(π/2) 1−(2/(2+asinx))  I′(a)=(π/(2a))−2∫_0 ^(π/2) (1/(2+asinx))dx  I′(a)=(π/(2a))−4∫_0 ^(π/2) (1/(2+((2at)/(1+t^2 )))).(1/(1+t^2 ))dt                (tan(x/2)=t)  I′(a)=(π/(2a))−4∫_0 ^1 (1/(2+2t^2 +2at))dt  I′(a)=(π/(2a))−2∫_0 ^1 (1/((t+(a/2))^2 +1−(a^2 /4)))dt  I′(a)=(π/(2a))−2(1/( (√(1−(a^2 /4))))).[tan^(−1) ((2t+a)/( (√(4−a^2 ))))]_0 ^1   I(a)=(π/2)log(a)−∫(4/( (√(4−a^2 ))))(tan^(−1) (√((2+a)/(2−a))) −tan^(−1) (a/( (√(4−a^2 )))))....  .....
I(a)=0π2log(2+asinx)dxI(a)=0π2sinx2+asinxdxI(a)=1a0π2122+asinxI(a)=π2a20π212+asinxdxI(a)=π2a40π212+2at1+t2.11+t2dt(tanx2=t)I(a)=π2a40112+2t2+2atdtI(a)=π2a2011(t+a2)2+1a24dtI(a)=π2a211a24.[tan12t+a4a2]01I(a)=π2log(a)44a2(tan12+a2atan1a4a2)...
Answered by mathdave last updated on 15/Sep/20
solution   let  A=∫_0 ^(π/2) ln[2(1−(1/2)sinx)]dx=ln2∫^(π/2) dx+∫^(π/2) (1−(1/2)sinx)dx  A=(π/2)ln2+∫_0 ^(π/2) (1−(1/2)sinx)dx  let I=∫_0 ^(π/2) (1−(1/2)sinx)dx.........(1)
solutionletA=0π2ln[2(112sinx)]dx=ln2π2dx+π2(112sinx)dxA=π2ln2+0π2(112sinx)dxletI=0π2(112sinx)dx(1)
Commented by mathdave last updated on 15/Sep/20
Commented by mathdave last updated on 15/Sep/20
Commented by mathdave last updated on 15/Sep/20
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by Olaf last updated on 15/Sep/20
I = ∫_0 ^(π/2) ln(2−sinx)dx  (1/(1−(1/2)sinx)) = Σ_(n=0) ^∞ ((sin^n x)/2^n )  ((−(1/2)cosx)/(1−(1/2)sinx)) = −(1/2)Σ_(n=0) ^∞ cosx((sin^n x)/2^n )  ln(1−(1/2)sinx) = −(1/2)Σ_(n=0) ^∞ ((sin^(n+1) x)/(2^n (n+1)))  I = (π/2)ln2+∫_0 ^(π/2) ln(1−(1/2)sinx)dx  I = (π/2)ln2−∫_0 ^(π/2) Σ_(n=0) ^∞ ((sin^(n+1) x)/(2^(n+1) (n+1)))dx  I = (π/2)ln2−∫_0 ^(π/2) Σ_(n=1) ^∞ ((sin^n x)/(n2^n ))dx  I = (π/2)ln2−Σ_(n=1) ^∞ (1/(n2^n ))∫_0 ^(π/2) sin^n xdx  W_n  = ∫_0 ^(π/2) sin^n xdx (Wallis)  I = (π/2)ln2−Σ_(n=1) ^∞ (W_n /(n2^n ))...
I=0π2ln(2sinx)dx1112sinx=n=0sinnx2n12cosx112sinx=12n=0cosxsinnx2nln(112sinx)=12n=0sinn+1x2n(n+1)I=π2ln2+0π2ln(112sinx)dxI=π2ln20π2n=0sinn+1x2n+1(n+1)dxI=π2ln20π2n=1sinnxn2ndxI=π2ln2n=11n2n0π2sinnxdxWn=0π2sinnxdx(Wallis)I=π2ln2n=1Wnn2n
Answered by mathmax by abdo last updated on 15/Sep/20
let I =∫_0 ^(π/2) ln(2−sinx)dx  ⇒I =∫_0 ^(π/2) ln(2)+ln(1−(1/2)sinx)dx  =(π/2)ln(2) +∫_0 ^(π/2)  ln(1−(1/2)sinx)dx  let f(a) =∫_0 ^(π/2) ln(1−asinx)dx  with0<a<1  f^′ (a) =∫_0 ^(π/2) ((−sinx)/(1−asinx)) dx =_(tan((x/2))=t)  −∫_0 ^1   (((2t)/(1+t^2 ))/(1−a((2t)/(1+t^2 ))))×((2dt)/(1+t^2 ))  =−∫_0 ^1   ((4t)/((1+t^2 )(1+t^2 −2at))) dt  =−4 ∫_0 ^1  ((tdt)/((t^2  +1)(t^2 −2at +1)))  let decomoose F(t) =(t/((t^2 −2at+1)(t^2  +1)))  t^2 −2at +1=0→Δ^′  =a^2 −1<0 ⇒F(t) =((αt +β)/(t^2 −2at +1)) +((mt +n)/(t^(2 )  +1))  ⇒(αt+β)(t^2  +1)+(mt+n)(t^2 −2at +1) =t ⇒  αt^3  +αt +βt^2  +β  +mt^3 −2amt^2 +mt +nt^2 −2ant +n =t ⇒  (α+m)t^3  +(β−2am +n)t^2  +(α+m−2an)t +β+n =t ⇒   { ((α+m =0)),((β−2am +n =0    and  { ((α+m −2an =1)),((β+n =0  ⇒)) :})) :}   { ((m=−α          and      { ((−2an =1)),((β =−n    ⇒ n =−(1/(2a)))) :})),((−2aα =0  )) :}  and α=0 ⇒m=0 ⇒F(t) =((1/(2a))/(t^2 −2at +1)) +((−(1/(2a)))/(t^2  +1))  =(1/(2a)){(1/(t^2 −2at +1))−(1/(t^2  +1))} ⇒  f^′ (a) =−(2/a)∫_0 ^1  (dt/(t^2 −2at +1)) +(2/a) ∫_0 ^1  (dt/(t^2  +1))  =(2/a)×(π/4) −(2/a) ∫_0 ^1  (dt/(t^2 −2at +1)) =(π/(2a))−(2/a) ∫_0 ^1  (dt/(t^2 −2at +1))  but ∫_0 ^1  (dt/(t^2 −2at +1)) =∫_0 ^1  (dt/(t^2 −2at +a^2 +1−a^2 )) =∫_0 ^1  (dt/((t−a)^2  +1−a^2 ))  =_(t−a =(√(1−a^2 ))u)    ∫_((−a)/( (√(1−a^2 )))) ^((1−a)/( (√(1−a^2 ))))       ((√(1−a^2 ))/((1−a^2 )(1+u^2 )))du  =(1/( (√(1−a^2 )))){ arctan(((1−a)/( (√(1−a^2 )))))+arctan((a/( (√(1−a^2 )))))} ⇒  f(a) =(π/2)lna  −2 ∫  (1/(a(√(1−a^2 )))) arctan(((1−a)/( (√(1−a^2 )))))da−2∫(1/(a(√(1−a^2 )))) arctan((a/( (√(1−a^2 )))))da  ....be continued ....
letI=0π2ln(2sinx)dxI=0π2ln(2)+ln(112sinx)dx=π2ln(2)+0π2ln(112sinx)dxletf(a)=0π2ln(1asinx)dxwith0<a<1f(a)=0π2sinx1asinxdx=tan(x2)=t012t1+t21a2t1+t2×2dt1+t2=014t(1+t2)(1+t22at)dt=401tdt(t2+1)(t22at+1)letdecomooseF(t)=t(t22at+1)(t2+1)t22at+1=0Δ=a21<0F(t)=αt+βt22at+1+mt+nt2+1(αt+β)(t2+1)+(mt+n)(t22at+1)=tαt3+αt+βt2+β+mt32amt2+mt+nt22ant+n=t(α+m)t3+(β2am+n)t2+(α+m2an)t+β+n=t{α+m=0β2am+n=0and{α+m2an=1β+n=0{m=αand{2an=1β=nn=12a2aα=0andα=0m=0F(t)=12at22at+1+12at2+1=12a{1t22at+11t2+1}f(a)=2a01dtt22at+1+2a01dtt2+1=2a×π42a01dtt22at+1=π2a2a01dtt22at+1but01dtt22at+1=01dtt22at+a2+1a2=01dt(ta)2+1a2=ta=1a2ua1a21a1a21a2(1a2)(1+u2)du=11a2{arctan(1a1a2)+arctan(a1a2)}f(a)=π2lna21a1a2arctan(1a1a2)da21a1a2arctan(a1a2)da.becontinued.
Commented by mathmax by abdo last updated on 16/Sep/20
we have ∫  (1/(a(√(1−a^2 )))) arctan(((1−a)/( (√(1−a^2 )))))da  =_(a =cost)     ∫ (1/(cost sint)) arctan(((1−cost)/(sint)))(−sint)dt  =−∫  (1/(cost)) arctan(((2sin^2 ((t/2)))/(2sin((t/2))cos((t/2)))))dt  =−∫  (1/(cost)) arctan(tan((t/2))dt =−(1/2) ∫   (t/(cost)) dt  =_(tan((t/2))=z)    −(1/2) ∫   ((2arctan(z))/((1−z^2 )/(1+z^2 ))) ((2dz)/(1+z^2 ))  =−2 ∫   ((arctan(z))/(1−z^2 )) dz.....be continued...
wehave1a1a2arctan(1a1a2)da=a=cost1costsintarctan(1costsint)(sint)dt=1costarctan(2sin2(t2)2sin(t2)cos(t2))dt=1costarctan(tan(t2)dt=12tcostdt=tan(t2)=z122arctan(z)1z21+z22dz1+z2=2arctan(z)1z2dz..becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *