Menu Close

0-pi-2-ln-cos-x-dx-




Question Number 105412 by john santu last updated on 28/Jul/20
∫_0 ^(π/2) ln (cos x) dx
π/20ln(cosx)dx
Answered by Dwaipayan Shikari last updated on 28/Jul/20
∫_0 ^(π/2) log(cosx)dx=I=∫_0 ^(π/2) log(sinx)dx  2I=∫_0 ^(π/2) log(sinxcosx)dx  2I=∫_0 ^(π/4) log(sin2x)dx−∫_0 ^(π/2) log(2)     {  ∫_0 ^(π/4) log(sin2x)=∫_0 ^(π/2) log(sint)}  2I=I−∫_0 ^(π/2) log(2)  I=−(π/2)log(2)
0π2log(cosx)dx=I=0π2log(sinx)dx2I=0π2log(sinxcosx)dx2I=0π4log(sin2x)dx0π2log(2){0π4log(sin2x)=0π2log(sint)}2I=I0π2log(2)I=π2log(2)
Commented by bemath last updated on 28/Jul/20
∫_0 ^(π/2) log (2) dx ?
π/20log(2)dx?
Commented by Dwaipayan Shikari last updated on 28/Jul/20
[xlog(2)]_0 ^(π/2) =((π/2)−0)log2=(π/2)log2
[xlog(2)]0π2=(π20)log2=π2log2
Commented by Dwaipayan Shikari last updated on 28/Jul/20
∫_0 ^(π/2) log(cosx)dx  =∫_0 ^(π/2) log(((e^(ix) +e^(−ix) )/2))dx  =∫_0 ^(π/2) log e^(−ix) +log(e^(2ix) +1)−∫_0 ^(π/2) log2  =∫_0 ^(π/2) −ix+∫log(e^(2ix) +1)−(π/2)log(2)  =−((iπ^2 )/8)−(π/2)log(2)+∫_0 ^(π/2) log(e^(2ix) +1)  =((−iπ^2 )/8)−(π/2)log(2)+((iπ^2 )/8)=−(π/2)log(2)
0π2log(cosx)dx=0π2log(eix+eix2)dx=0π2logeix+log(e2ix+1)0π2log2=0π2ix+log(e2ix+1)π2log(2)=iπ28π2log(2)+0π2log(e2ix+1)=iπ28π2log(2)+iπ28=π2log(2)
Commented by Dwaipayan Shikari last updated on 28/Jul/20
Commented by Dwaipayan Shikari last updated on 28/Jul/20
From wolfram alpha
Fromwolframalpha
Answered by bemath last updated on 29/Jul/20
Commented by mathmax by abdo last updated on 29/Jul/20
no sir the correct answer is ∫_0 ^(π/2) ln(sinu)du =−(π/2)ln(2)
nosirthecorrectansweris0π2ln(sinu)du=π2ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *