Menu Close

0-pi-2-ln-sinx-ln-cosx-dx-




Question Number 160358 by Ar Brandon last updated on 28/Nov/21
∫_0 ^(π/2) ln(sinx)ln(cosx)dx
0π2ln(sinx)ln(cosx)dx
Answered by amin96 last updated on 28/Nov/21
sin(x)=t   (dt/dx)=cos(x)=(√(1−t^2 ))  𝛀=∫_0 ^1 ((ln(t)ln((√(1−t^2 ))))/( (√(1−t^2 ))))dt=(1/2)∫_0 ^1 ((ln(t)ln(1−t^2 ))/( (√(1−t^2 ))))dt  t^2 =x    (dx/dt)=2t=2(√x)     𝛀=(1/4)∫_0 ^1 ((ln((√x))ln(1−x))/( (√x) (√(1−x))))dx=(1/8)∫_0 ^1 ((((√(1−x)))ln(x)ln(1−x))/( (√x)×(1−x)))dx=  =−(1/8)Σ_(n=1) ^∞ H_n ∫_0 ^1 x^(n−(1/2)) (1−x)^(1/2) ln(x)dx=  =−(1/8)ΣH_n (Σ(((−1)^(n+1) )/n))∫_0 ^1 x^(n−(1/2)) (1−x)^(1/2) (x−1)^n dx=  =(1/8)Σ_(n=1) ^∞ H_n {Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^(n−(1/2)) (1−x)^(n+(1/2)) dx}=  =(1/8)Σ_(n=1) ^∞ H_n {Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^((n+(1/2))−1) (1−x)^((n+(3/2))−1) dx}=  =(1/8)Σ_(n=1) ^∞ H_n {Σ_(n=1) ^∞ (1/n)𝛃(n+(1/2); n+(3/2))}
sin(x)=tdtdx=cos(x)=1t2Ω=01ln(t)ln(1t2)1t2dt=1201ln(t)ln(1t2)1t2dtt2=xdxdt=2t=2xΩ=1401ln(x)ln(1x)x1xdx=1801(1x)ln(x)ln(1x)x×(1x)dx==18n=1Hn01xn12(1x)12ln(x)dx==18ΣHn(Σ(1)n+1n)01xn12(1x)12(x1)ndx==18n=1Hn{n=11n01xn12(1x)n+12dx}==18n=1Hn{n=11n01x(n+12)1(1x)(n+32)1dx}==18n=1Hn{n=11nβ(n+12;n+32)}
Commented by Ar Brandon last updated on 28/Nov/21
I wish it is further simplified.
Iwishitisfurthersimplified.
Commented by amin96 last updated on 28/Nov/21
   do you know the answer?
do you know the answer?
Commented by Ar Brandon last updated on 29/Nov/21
Yeah
Yeah
Commented by Ar Brandon last updated on 29/Nov/21
(π/2)ln^2 2−(π^3 /(48))
π2ln22π348
Commented by amin96 last updated on 29/Nov/21
∫_0 ^(π/2) xln(sinx)ln(cosx)dx     The answer to this integral
0π2xln(sinx)ln(cosx)dxThe answer to this integral
Commented by Ar Brandon last updated on 29/Nov/21
∫_0 ^(π/2) xln(sinx)ln(cosx)dx=(π^2 /8)ln^2 2−(π^4 /(192))  ∫_0 ^(π/2) xln(sinx)ln(cosx)dx=(π/4)∫_0 ^(π/2) ln(sinx)ln(cosx)dx
0π2xln(sinx)ln(cosx)dx=π28ln22π41920π2xln(sinx)ln(cosx)dx=π40π2ln(sinx)ln(cosx)dx

Leave a Reply

Your email address will not be published. Required fields are marked *