Question Number 160358 by Ar Brandon last updated on 28/Nov/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$
Answered by amin96 last updated on 28/Nov/21
$$\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{t}}\:\:\:\frac{\boldsymbol{\mathrm{dt}}}{\boldsymbol{\mathrm{dx}}}=\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)=\sqrt{\mathrm{1}ā\boldsymbol{\mathrm{t}}^{\mathrm{2}} } \\ $$$$\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{t}}\right)\boldsymbol{\mathrm{ln}}\left(\sqrt{\mathrm{1}ā\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}ā\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{t}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}ā\boldsymbol{\mathrm{t}}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}ā\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}} \\ $$$$\boldsymbol{\mathrm{t}}^{\mathrm{2}} =\boldsymbol{\mathrm{x}}\:\:\:\:\frac{\boldsymbol{\mathrm{dx}}}{\boldsymbol{\mathrm{dt}}}=\mathrm{2}\boldsymbol{\mathrm{t}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{x}}}\:\:\: \\ $$$$\boldsymbol{\Omega}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)}{\:\sqrt{\boldsymbol{\mathrm{x}}}\:\sqrt{\mathrm{1}ā\boldsymbol{\mathrm{x}}}}\boldsymbol{\mathrm{dx}}=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\sqrt{\mathrm{1}ā\boldsymbol{\mathrm{x}}}\right)\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)}{\:\sqrt{\boldsymbol{\mathrm{x}}}Ć\left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)}\boldsymbol{\mathrm{dx}}= \\ $$$$=ā\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}ā\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}= \\ $$$$=ā\frac{\mathrm{1}}{\mathrm{8}}\Sigma\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left(\Sigma\frac{\left(ā\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\boldsymbol{\mathrm{n}}}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}ā\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\boldsymbol{\mathrm{x}}ā\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{dx}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left\{\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}ā\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{\mathrm{dx}}\right\}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left\{\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\left(\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)ā\mathrm{1}} \left(\mathrm{1}ā\boldsymbol{\mathrm{x}}\right)^{\left(\boldsymbol{\mathrm{n}}+\frac{\mathrm{3}}{\mathrm{2}}\right)ā\mathrm{1}} \boldsymbol{\mathrm{dx}}\right\}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left\{\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\boldsymbol{\beta}\left(\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}};\:\boldsymbol{\mathrm{n}}+\frac{\mathrm{3}}{\mathrm{2}}\right)\right\} \\ $$
Commented by Ar Brandon last updated on 28/Nov/21
$$\mathrm{I}\:\mathrm{wish}\:\mathrm{it}\:\mathrm{is}\:\mathrm{further}\:\mathrm{simplified}. \\ $$
Commented by amin96 last updated on 28/Nov/21
$$ \\ $$ do you know the answer?
Commented by Ar Brandon last updated on 29/Nov/21
$$\mathrm{Yeah} \\ $$
Commented by Ar Brandon last updated on 29/Nov/21
$$\frac{\pi}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \mathrm{2}ā\frac{\pi^{\mathrm{3}} }{\mathrm{48}} \\ $$
Commented by amin96 last updated on 29/Nov/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{xln}}\left(\boldsymbol{\mathrm{sinx}}\right)\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{cosx}}\right)\boldsymbol{\mathrm{dx}}\: \\ $$$$ \\ $$The answer to this integral
Commented by Ar Brandon last updated on 29/Nov/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\mathrm{ln}^{\mathrm{2}} \mathrm{2}ā\frac{\pi^{\mathrm{4}} }{\mathrm{192}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx}=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$