Menu Close

0-pi-2-ln-sinx-ln-cosx-dx-




Question Number 160358 by Ar Brandon last updated on 28/Nov/21
āˆ«_0 ^(Ļ€/2) ln(sinx)ln(cosx)dx
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$
Answered by amin96 last updated on 28/Nov/21
sin(x)=t   (dt/dx)=cos(x)=(āˆš(1āˆ’t^2 ))  š›€=āˆ«_0 ^1 ((ln(t)ln((āˆš(1āˆ’t^2 ))))/( (āˆš(1āˆ’t^2 ))))dt=(1/2)āˆ«_0 ^1 ((ln(t)ln(1āˆ’t^2 ))/( (āˆš(1āˆ’t^2 ))))dt  t^2 =x    (dx/dt)=2t=2(āˆšx)     š›€=(1/4)āˆ«_0 ^1 ((ln((āˆšx))ln(1āˆ’x))/( (āˆšx) (āˆš(1āˆ’x))))dx=(1/8)āˆ«_0 ^1 ((((āˆš(1āˆ’x)))ln(x)ln(1āˆ’x))/( (āˆšx)Ɨ(1āˆ’x)))dx=  =āˆ’(1/8)Ī£_(n=1) ^āˆž H_n āˆ«_0 ^1 x^(nāˆ’(1/2)) (1āˆ’x)^(1/2) ln(x)dx=  =āˆ’(1/8)Ī£H_n (Ī£(((āˆ’1)^(n+1) )/n))āˆ«_0 ^1 x^(nāˆ’(1/2)) (1āˆ’x)^(1/2) (xāˆ’1)^n dx=  =(1/8)Ī£_(n=1) ^āˆž H_n {Ī£_(n=1) ^āˆž (1/n)āˆ«_0 ^1 x^(nāˆ’(1/2)) (1āˆ’x)^(n+(1/2)) dx}=  =(1/8)Ī£_(n=1) ^āˆž H_n {Ī£_(n=1) ^āˆž (1/n)āˆ«_0 ^1 x^((n+(1/2))āˆ’1) (1āˆ’x)^((n+(3/2))āˆ’1) dx}=  =(1/8)Ī£_(n=1) ^āˆž H_n {Ī£_(n=1) ^āˆž (1/n)š›ƒ(n+(1/2); n+(3/2))}
$$\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{t}}\:\:\:\frac{\boldsymbol{\mathrm{dt}}}{\boldsymbol{\mathrm{dx}}}=\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)=\sqrt{\mathrm{1}āˆ’\boldsymbol{\mathrm{t}}^{\mathrm{2}} } \\ $$$$\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{t}}\right)\boldsymbol{\mathrm{ln}}\left(\sqrt{\mathrm{1}āˆ’\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}āˆ’\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{t}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}āˆ’\boldsymbol{\mathrm{t}}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}āˆ’\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}} \\ $$$$\boldsymbol{\mathrm{t}}^{\mathrm{2}} =\boldsymbol{\mathrm{x}}\:\:\:\:\frac{\boldsymbol{\mathrm{dx}}}{\boldsymbol{\mathrm{dt}}}=\mathrm{2}\boldsymbol{\mathrm{t}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{x}}}\:\:\: \\ $$$$\boldsymbol{\Omega}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)}{\:\sqrt{\boldsymbol{\mathrm{x}}}\:\sqrt{\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}}}\boldsymbol{\mathrm{dx}}=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\sqrt{\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}}\right)\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)}{\:\sqrt{\boldsymbol{\mathrm{x}}}Ɨ\left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)}\boldsymbol{\mathrm{dx}}= \\ $$$$=āˆ’\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}āˆ’\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}= \\ $$$$=āˆ’\frac{\mathrm{1}}{\mathrm{8}}\Sigma\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left(\Sigma\frac{\left(āˆ’\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\boldsymbol{\mathrm{n}}}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}āˆ’\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\boldsymbol{\mathrm{x}}āˆ’\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{dx}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left\{\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}āˆ’\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{\mathrm{dx}}\right\}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left\{\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\left(\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)āˆ’\mathrm{1}} \left(\mathrm{1}āˆ’\boldsymbol{\mathrm{x}}\right)^{\left(\boldsymbol{\mathrm{n}}+\frac{\mathrm{3}}{\mathrm{2}}\right)āˆ’\mathrm{1}} \boldsymbol{\mathrm{dx}}\right\}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} \left\{\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\boldsymbol{\beta}\left(\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}};\:\boldsymbol{\mathrm{n}}+\frac{\mathrm{3}}{\mathrm{2}}\right)\right\} \\ $$
Commented by Ar Brandon last updated on 28/Nov/21
I wish it is further simplified.
$$\mathrm{I}\:\mathrm{wish}\:\mathrm{it}\:\mathrm{is}\:\mathrm{further}\:\mathrm{simplified}. \\ $$
Commented by amin96 last updated on 28/Nov/21
   do you know the answer?
$$ \\ $$ do you know the answer?
Commented by Ar Brandon last updated on 29/Nov/21
Yeah
$$\mathrm{Yeah} \\ $$
Commented by Ar Brandon last updated on 29/Nov/21
(Ļ€/2)ln^2 2āˆ’(Ļ€^3 /(48))
$$\frac{\pi}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \mathrm{2}āˆ’\frac{\pi^{\mathrm{3}} }{\mathrm{48}} \\ $$
Commented by amin96 last updated on 29/Nov/21
āˆ«_0 ^(Ļ€/2) xln(sinx)ln(cosx)dx     The answer to this integral
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{xln}}\left(\boldsymbol{\mathrm{sinx}}\right)\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{cosx}}\right)\boldsymbol{\mathrm{dx}}\: \\ $$$$ \\ $$The answer to this integral
Commented by Ar Brandon last updated on 29/Nov/21
āˆ«_0 ^(Ļ€/2) xln(sinx)ln(cosx)dx=(Ļ€^2 /8)ln^2 2āˆ’(Ļ€^4 /(192))  āˆ«_0 ^(Ļ€/2) xln(sinx)ln(cosx)dx=(Ļ€/4)āˆ«_0 ^(Ļ€/2) ln(sinx)ln(cosx)dx
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\mathrm{ln}^{\mathrm{2}} \mathrm{2}āˆ’\frac{\pi^{\mathrm{4}} }{\mathrm{192}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx}=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *