Menu Close

0-pi-2-log-2-tan-x-dx-




Question Number 123159 by Lordose last updated on 23/Nov/20
∫_( 0) ^( (π/2)) log^2 (tan(x))dx
0π2log2(tan(x))dx
Answered by mnjuly1970 last updated on 23/Nov/20
ans:=(π^3 /8)
ans:=π38
Commented by Lordose last updated on 23/Nov/20
It′s correct sir
Itscorrectsir
Commented by mnjuly1970 last updated on 23/Nov/20
thank you  solution  I=∫_0 ^( (π/2)) log^2 (tan(x))dx=^(tan(x)=y)     =∫_0 ^( ∞) log^2 (y)(dy/(1+y^2 ))=^(y^2 =t) (1/8)∫_0 ^( ∞)  ((t^((−1)/2) log^2 (t))/(1+t)) dt     I(a) =∫_0 ^( ∞) (t^(((−1)/2)+a) /(1+t))dt    goal ::  I=(1/8)I ′′(0)      but :  I(a)=β((1/2)+a,(1/2)−a)                               =Γ((1/2)+a)Γ((1/2)−a)                      =_(reflection formula) ^(euler) (π/(sin((π/2)+πa)))=(π/(cos(πa)))   I ′(a)=((π^2 sin(πa))/(cos^2 (πa)))    I ′′(a)=π^2 (((πcos^3 (πa)+2πsin^2 (πa)cos(πa))/(cos^4 (πa))))∣_(a=0)      I ′′(0)=π^3 ⇒ I=(π^3 /8)  ✓✓
thankyousolutionI=0π2log2(tan(x))dx=tan(x)=y=0log2(y)dy1+y2=y2=t180t12log2(t)1+tdtI(a)=0t12+a1+tdtgoal::I=18I(0)but:I(a)=β(12+a,12a)=Γ(12+a)Γ(12a)=eulerreflectionformulaπsin(π2+πa)=πcos(πa)I(a)=π2sin(πa)cos2(πa)I(a)=π2(πcos3(πa)+2πsin2(πa)cos(πa)cos4(πa))a=0I(0)=π3I=π38
Commented by Dwaipayan Shikari last updated on 23/Nov/20
Great sir! i haven′t thought of this
Greatsir!ihaventthoughtofthis
Commented by mnjuly1970 last updated on 23/Nov/20
   thank you so much sir payan    to me your solution is very very   nice and unique...
thankyousomuchsirpayantomeyoursolutionisveryveryniceandunique
Answered by Dwaipayan Shikari last updated on 23/Nov/20
∫_0 ^(π/2) log^2 (tanx)dx  =∫_0 ^∞ ((log^2 t)/(t^2 +1))dt   =Σ_(n≥0) ^∞ ∫_0 ^∞ log^2 t (−1)^n t^(2n) dt        logt=u⇒(1/t)=(du/dt)  =Σ_(n≥0) ^∞ (−1)^n ∫_(−∞) ^∞ u^2 e^(2nu+u) dt               u(2n+1)=Λ  =2Σ_(n≥0) ^∞ (((−1)^n )/((2n+1)^3 ))∫_0 ^∞ Λ^2 e^(−Λ) dΛ  =2Σ_(n≥0) ^∞ (((−1)^n )/((2n+1)^3 ))Γ(3)  =4Σ_(n≥0) ^∞ (((−1)^n )/((2n+1)^3 ))=4.(π^3 /(32))=(π^3 /8)
0π2log2(tanx)dx=0log2tt2+1dt=n00log2t(1)nt2ndtlogt=u1t=dudt=n0(1)nu2e2nu+udtu(2n+1)=Λ=2n0(1)n(2n+1)30Λ2eΛdΛ=2n0(1)n(2n+1)3Γ(3)=4n0(1)n(2n+1)3=4.π332=π38
Commented by mnjuly1970 last updated on 23/Nov/20
very good ...
verygood
Commented by Lordose last updated on 23/Nov/20
Can you explain from 4th line
Canyouexplainfrom4thline
Commented by Dwaipayan Shikari last updated on 24/Nov/20
Σ_(n≥0) ^∞ (−1)^n ∫_(−∞) ^∞ (Λ^2 /((2n+1)^2 (2n+1)))e^Λ dΛ      u(2n+1)=Λ  =Σ_(n≥0) ^∞ (((−1)^n )/((2n+1)^3 ))∫_∞ ^(−∞) −Φ^2 e^(−Φ)  dΦ         Λ=−Φ  =2Σ_(n≥0) ^∞ (((−1)^n )/((2n+1)^3 ))∫_0 ^∞ Φ^2 e^(−Φ) dΦ   =2 .Γ(3)(π^3 /(32))=(π^3 /8)
n0(1)nΛ2(2n+1)2(2n+1)eΛdΛu(2n+1)=Λ=n0(1)n(2n+1)3Φ2eΦdΦΛ=Φ=2n0(1)n(2n+1)30Φ2eΦdΦ=2.Γ(3)π332=π38
Answered by mathmax by abdo last updated on 23/Nov/20
A =∫_0 ^(π/2) ln^2 (tanx)dx changementtanx=t give  A =∫_0 ^∞ ((ln^2 (t))/(1+t^2 ))dt =∫_0 ^1  ((ln^2 (t))/(1+t^2 ))dt +∫_1 ^∞  ((ln^2 (t))/(1+t^2 ))dt (→t=(1/x))  =∫_0 ^1  ((ln^2 (t))/(1+t^2 ))dt  −∫_0 ^1 ((ln^2 (x))/(1+(1/x^2 )))(−(dx/x^2 )) =2∫_0 ^1  ((ln^2 (x))/(1+x^2 ))dx  =2∫_0 ^1 ln^2 (x)(Σ_(n=0) ^∞  (−1)^n  x^(2n) )dx =2Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1  x^(2n) ln^2 (x)dx  u_n =∫_0 ^(1 ) x^(2n)  ln^2 (x)dx =[(x^(2n+1) /(2n+1))ln^2 (x)]_0 ^1 −∫_0 ^1  (x^(2n+1) /(2n+1))((2lnx)/x)dx  =−(2/(2n+1))∫_0 ^1  x^(2n) ln(x)dx =−(2/(2n+1)){[(x^(2n+1) /(2n+1))lnx]_0 ^1 −∫_0 ^1  (x^(2n) /((2n+1)))dx}  =(2/((2n+1)^3 )) ⇒ A =4 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 ))  rest to find tbe value of this  serie by fourier....
A=0π2ln2(tanx)dxchangementtanx=tgiveA=0ln2(t)1+t2dt=01ln2(t)1+t2dt+1ln2(t)1+t2dt(t=1x)=01ln2(t)1+t2dt01ln2(x)1+1x2(dxx2)=201ln2(x)1+x2dx=201ln2(x)(n=0(1)nx2n)dx=2n=0(1)n01x2nln2(x)dxun=01x2nln2(x)dx=[x2n+12n+1ln2(x)]0101x2n+12n+12lnxxdx=22n+101x2nln(x)dx=22n+1{[x2n+12n+1lnx]0101x2n(2n+1)dx}=2(2n+1)3A=4n=0(1)n(2n+1)3resttofindtbevalueofthisseriebyfourier.

Leave a Reply

Your email address will not be published. Required fields are marked *