0-pi-2-log-sin-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 89161 by M±th+et£s last updated on 15/Apr/20 ∫0π2log(sin(x))dx Commented by niroj last updated on 15/Apr/20 I=∫0π2logsinxdx…..(i)=∫0π2logsin(π2−x)dx[∵∫0\boldsymbola\boldsymbolf(\boldsymbolc)\boldsymboldx=∫0\boldsymbola\boldsymbolf(\boldsymbola−\boldsymbolc)\boldsymboldx]I=∫0π2logcosxdx…..(ii)added(i)+(ii)2I=∫0π2(logsinx+logcosx)dx2I=∫0π2logsinx.cosxdx2I=∫0π2log(2sinxcosx2)dx2I=∫0π2logsin2xdx−∫0π2log2dxput2x=t2dx=dtdx=dt2ifx=π2thent=πifx=0thent=0∫0πlogsint.dt2=12∫0πlogsintdt=12×2∫0π2logsintdt∴∫0π2logsintdt=∫0π2logsinxdx=I2I=I−log2∫0π2dx2I−I=−log2[x]0π2I=log2−1[π2−0]I=π2log12//. Commented by M±th+et£s last updated on 15/Apr/20 thanxforthesolutions Answered by TANMAY PANACEA. last updated on 15/Apr/20 I=∫0π2log(sin(π2−x))dx2I=∫0π2logsinx+logcosxdx2I=∫0π2log(sin2x2)2I=∫0π2log(sin2x)dx−∫0π2log2dx2I=∫0π2log(sin2x)dx−π2log2\boldsymbolnow\boldsymbolmain\boldsymbolpoint…\boldsymbolt=2\boldsymbolx∫0πlogsint×dt212∫0πlogsintdt12×2∫0π2logsintdt=\boldsymbolIusing∫02af(x)dx=2∫0af(x)dxwhenf(2a−x)=f(x)herea=π2sosin(2×π2−x)=sinx\boldsymbolnow…2I=∫0π2logsin2xdx−π2log22I=I−π2log2I=−π2log2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-P-RE-2-R-B-2-make-R-the-subject-of-the-formula-Next Next post: Question-23632 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.