Menu Close

0-pi-2-sin-2xlog-tan-x-dx-




Question Number 152275 by peter frank last updated on 27/Aug/21
∫_0 ^(π/2) sin 2xlog( tan x)dx
0π2sin2xlog(tanx)dx
Answered by qaz last updated on 27/Aug/21
∫_0 ^(π/2) sin 2x∙lntan xdx  =2∫_0 ^(π/2) sin xcos x(lnsin x−lncos x)dx  ={∫lnsin xd(sin^2 x)+∫lncos xd(cos^2 x)}_0 ^(π/2)   =sin^2 xlnsin x+cos^2 xlncos x ∣_0 ^(π/2)   =0
0π/2sin2xlntanxdx=20π/2sinxcosx(lnsinxlncosx)dx={lnsinxd(sin2x)+lncosxd(cos2x)}0π/2=sin2xlnsinx+cos2xlncosx0π/2=0
Answered by mnjuly1970 last updated on 27/Aug/21
   I=∫_0 ^( (π/2))  sin(2x)ln(tan(x))dx ...(1)     I= ∫_0 ^( (π/2)) sin(2x).ln(cot(x))dx ...(2)   (1)+(2):  2I= ∫_0 ^( (π/2)) sin(2x)ln(1)=0      I=0...
I=0π2sin(2x)ln(tan(x))dx(1)I=0π2sin(2x).ln(cot(x))dx(2)(1)+(2):2I=0π2sin(2x)ln(1)=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *