Menu Close

0-pi-2-sin-3-x-sin-x-cos-x-dx-




Question Number 175351 by cortano1 last updated on 28/Aug/22
  ∫_0 ^(π/2)  ((sin^3 x)/(sin x+cos x)) dx =?
π/20sin3xsinx+cosxdx=?
Answered by som(math1967) last updated on 28/Aug/22
I=∫_0 ^(π/2) ((sin^3 ((π/2)+0−x)dx)/(sin((π/2)+0−x)+cos((π/2)+0−x)))  =∫_0 ^(π/2) ((cos^3 xdx)/(cosx+sinx))  2I=∫_0 ^(π/2) ((sin^3 x+cos^3 x)/(sinx+cosx))dx  2I=∫_0 ^(π/2) (sin^2 x−sinxcox+cos^2 x)dx  2I=∫_0 ^(π/2) dx−(1/2)∫_0 ^(π/2) sin2xdx  2I=[x+((cos2x)/4)]_0 ^(π/2)   2I=((π/2)−(1/4))−(0+(1/4))  I=(π/4) −(1/4)
I=0π2sin3(π2+0x)dxsin(π2+0x)+cos(π2+0x)=0π2cos3xdxcosx+sinx2I=0π2sin3x+cos3xsinx+cosxdx2I=0π2(sin2xsinxcox+cos2x)dx2I=0π2dx120π2sin2xdx2I=[x+cos2x4]0π22I=(π214)(0+14)I=π414
Commented by cortano1 last updated on 28/Aug/22
by King Formula
byKingFormula
Commented by som(math1967) last updated on 28/Aug/22
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *