Menu Close

0-pi-2-sin-x-sin-2x-dx-pi-4-pi-4-cos-x-cos-2x-dx-




Question Number 52900 by MJS last updated on 15/Jan/19
∫_0 ^(π/2) sin x (√(sin 2x)) dx=?  ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=?
π20sinxsin2xdx=?π4π4cosxcos2xdx=?
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
I=∫_0 ^(π/2) sinx(√(sin2x)) dx  I=∫_0 ^(π/2) cosx(√(sin2x)) dx  [∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx]  2I=∫_0 ^(π/2) (cosx+sinx)(√(sin2x)) dx  =∫_0 ^(π/2) d(sinx−cosx)(√(1−(1−sin2x))) dx  ∫_0 ^(π/2) d(sinx−cosx)(√(1−(sinx−cosx)^2 )) dx  ∣(((sinx−cosx)(√(1−(sinx−cosx)^2 )))/2)+(1/2)sin^(−1) (((sinx−cosx)/1))∣_0 ^(π/2)   =[{(((1−0)(√(1−(1−0)^2 )))/2)+(1/2)sin^(−1) (((1−0)/1))}−{((0−1(√(1−1)))/2)+(1/2)sin^(−1) (((0−1)/1))}]  =(1/2)×(π/2)−{(1/2)×(((−π)/2))}  =(π/4)+(π/4)=(π/2)  so I=(1/2)×(π/2)=(π/4)  sir pls check...
I=0π2sinxsin2xdxI=0π2cosxsin2xdx[0af(x)dx=0af(ax)dx]2I=0π2(cosx+sinx)sin2xdx=0π2d(sinxcosx)1(1sin2x)dx0π2d(sinxcosx)1(sinxcosx)2dx(sinxcosx)1(sinxcosx)22+12sin1(sinxcosx1)0π2=[{(10)1(10)22+12sin1(101)}{01112+12sin1(011)}]=12×π2{12×(π2)}=π4+π4=π2soI=12×π2=π4sirplscheck
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
∫_(−(π/4)) ^(π/4)  cosx(√(cos2x)) dx    ∫_(−a) ^a f(x)dx=2×∫_0 ^a f(x)dx [here f(x)=evenfunction]  so∫_((−π)/4) ^(π/4)  cosx(√(cos2x)) dx=2×∫_0 ^(π/4) cosx(√(cos2x)) dx  now using help of graph...
π4π4cosxcos2xdxaaf(x)dx=2×0af(x)dx[heref(x)=evenfunction]soπ4π4cosxcos2xdx=2×0π4cosxcos2xdxnowusinghelpofgraph
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
so ∫_((−π)/4) ^(π/4)  cosx(√(cos2x)) dx=area under the curve                                               ≈(2/3)×(π/2)×1=(π/3)  roughly it is a parabola sir...so area  (2/3)ab
soπ4π4cosxcos2xdx=areaunderthecurve23×π2×1=π3roughlyitisaparabolasirsoarea23ab
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
Answered by mr W last updated on 16/Jan/19
∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx  =2∫_0 ^(π/4) cos x (√(cos 2x)) dx  =2∫_0 ^(π/4) cos x(√(1−2 sin^2  x)) dx  =(√2)∫_0 ^(π/4) (√(1−((√2) sin x)^2 )) d((√2) sin x)        (∫(√(1−t^2 )) dt)  =((√2)/2)[sin^(−1) ((√2) sin x)+((√2) sin x)(√(1−((√2) sin x)^2 ))]_0 ^(π/4)   =((√2)/2)((π/2))  =((π(√2))/4)
π4π4cosxcos2xdx=2π40cosxcos2xdx=2π40cosx12sin2xdx=2π401(2sinx)2d(2sinx)(1t2dt)=22[sin1(2sinx)+(2sinx)1(2sinx)2]0π4=22(π2)=π24

Leave a Reply

Your email address will not be published. Required fields are marked *