Question Number 52900 by MJS last updated on 15/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
![I=∫_0 ^(π/2) sinx(√(sin2x)) dx I=∫_0 ^(π/2) cosx(√(sin2x)) dx [∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx] 2I=∫_0 ^(π/2) (cosx+sinx)(√(sin2x)) dx =∫_0 ^(π/2) d(sinx−cosx)(√(1−(1−sin2x))) dx ∫_0 ^(π/2) d(sinx−cosx)(√(1−(sinx−cosx)^2 )) dx ∣(((sinx−cosx)(√(1−(sinx−cosx)^2 )))/2)+(1/2)sin^(−1) (((sinx−cosx)/1))∣_0 ^(π/2) =[{(((1−0)(√(1−(1−0)^2 )))/2)+(1/2)sin^(−1) (((1−0)/1))}−{((0−1(√(1−1)))/2)+(1/2)sin^(−1) (((0−1)/1))}] =(1/2)×(π/2)−{(1/2)×(((−π)/2))} =(π/4)+(π/4)=(π/2) so I=(1/2)×(π/2)=(π/4) sir pls check...](https://www.tinkutara.com/question/Q52916.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
![∫_(−(π/4)) ^(π/4) cosx(√(cos2x)) dx ∫_(−a) ^a f(x)dx=2×∫_0 ^a f(x)dx [here f(x)=evenfunction] so∫_((−π)/4) ^(π/4) cosx(√(cos2x)) dx=2×∫_0 ^(π/4) cosx(√(cos2x)) dx now using help of graph...](https://www.tinkutara.com/question/Q52919.png)
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Answered by mr W last updated on 16/Jan/19
![∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx =2∫_0 ^(π/4) cos x (√(cos 2x)) dx =2∫_0 ^(π/4) cos x(√(1−2 sin^2 x)) dx =(√2)∫_0 ^(π/4) (√(1−((√2) sin x)^2 )) d((√2) sin x) (∫(√(1−t^2 )) dt) =((√2)/2)[sin^(−1) ((√2) sin x)+((√2) sin x)(√(1−((√2) sin x)^2 ))]_0 ^(π/4) =((√2)/2)((π/2)) =((π(√2))/4)](https://www.tinkutara.com/question/Q52990.png)