Menu Close

0-pi-2-tan-1-cos-x-dx-I-d-need-the-exact-value-if-possible-I-ve-got-no-idea-if-and-how-this-can-be-solved-




Question Number 181643 by Frix last updated on 28/Nov/22
Ω=∫_0 ^(π/2) tan^(−1)  cos x dx  (I′d need the exact value if possible. I′ve  got no idea if and how this can be solved.)
$$\Omega=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{tan}^{−\mathrm{1}} \:\mathrm{cos}\:{x}\:{dx} \\ $$$$\left(\mathrm{I}'\mathrm{d}\:\mathrm{need}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{if}\:\mathrm{possible}.\:\mathrm{I}'\mathrm{ve}\right. \\ $$$$\left.\mathrm{got}\:\mathrm{no}\:\mathrm{idea}\:\mathrm{if}\:\mathrm{and}\:\mathrm{how}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}.\right) \\ $$
Commented by MJS_new last updated on 28/Nov/22
it′s possible to solve the integral but it′s very  complicated and I don′t think you could use  the exact value.  Ω≈.845291  www.wolframalpha.com gives the exact  indefinite integral which needs about 25  lines but only an approximate value for [0; π/2]
$$\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{very} \\ $$$$\mathrm{complicated}\:\mathrm{and}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{you}\:\mathrm{could}\:\mathrm{use} \\ $$$$\mathrm{the}\:\mathrm{exact}\:\mathrm{value}. \\ $$$$\Omega\approx.\mathrm{845291} \\ $$$$\mathrm{www}.\mathrm{wolframalpha}.\mathrm{com}\:\mathrm{gives}\:\mathrm{the}\:\mathrm{exact} \\ $$$$\mathrm{indefinite}\:\mathrm{integral}\:\mathrm{which}\:\mathrm{needs}\:\mathrm{about}\:\mathrm{25} \\ $$$$\mathrm{lines}\:\mathrm{but}\:\mathrm{only}\:\mathrm{an}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{for}\:\left[\mathrm{0};\:\pi/\mathrm{2}\right] \\ $$
Commented by Frix last updated on 28/Nov/22
Ok I see...
$$\mathrm{Ok}\:\mathrm{I}\:\mathrm{see}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *