Menu Close

0-pi-2-tan-m-1-k-d-for-m-gt-1-




Question Number 91735 by frc2crc last updated on 02/May/20
∫_0 ^(π/2) ((tan^m  α))^(1/k)  dα for m>1
0π/2tanmαkdαform>1
Commented by mathmax by abdo last updated on 03/May/20
I =∫_0 ^(π/2) (tan^m α)^(1/k)  dα  chsngement tanα =x give  I =∫_0 ^∞ (x^m )^(1/k)  (dx/(1+x^2 )) =∫_0 ^∞   (x^(m/k) /(1+x^2 ))dx  changement  x=u^(1/2)  give  I =∫_0 ^∞   (u^(m/(2k)) /(1+u)) (1/2)u^((1/2)−1)  du =(1/2)∫_0 ^∞   (u^((m/(2k))+(1/2)−1) /(1+u)) du  we have proved that ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa))) if o<a<1 ⇒   I =(1/2)×(π/(sin(π((m/(2k))+(1/2))))) =(π/(2sin(((mπ)/(2k))+(π/2)))) ⇒  I =(π/(2cos(((mπ)/(2k)))))  (m/(2k))+(1/2)−1 =(m/(2k))−(1/2) =(1/2)((m/k)−1)<0 ⇒m<k  so the condition is  1<m<k
I=0π2(tanmα)1kdαchsngementtanα=xgiveI=0(xm)1kdx1+x2=0xmk1+x2dxchangementx=u12giveI=0um2k1+u12u121du=120um2k+1211+uduwehaveprovedthat0ta11+tdt=πsin(πa)ifo<a<1I=12×πsin(π(m2k+12))=π2sin(mπ2k+π2)I=π2cos(mπ2k)m2k+121=m2k12=12(mk1)<0m<ksotheconditionis1<m<k

Leave a Reply

Your email address will not be published. Required fields are marked *