Menu Close

0-pi-2-tanx-1-7-dx-




Question Number 122176 by Dwaipayan Shikari last updated on 14/Nov/20
∫_0 ^(π/2) ((tanx))^(1/7)  dx
0π2tanx7dx
Commented by Dwaipayan Shikari last updated on 14/Nov/20
I have found (π/2)cosec(((3π)/7))
Ihavefoundπ2cosec(3π7)
Commented by mnjuly1970 last updated on 14/Nov/20
 perfect mr dwaipayan..
perfectmrdwaipayan..
Answered by mnjuly1970 last updated on 14/Nov/20
 I=(1/2)∗2∫_0 ^( (π/2)) sin^(1/7) (x)cos^((−1)/7) dx    =(1/2)β((4/7) , (3/7))=(1/2) ∗((Γ((4/7))Γ(1−(4/7)))/(Γ(1)))                 =(1/2)∗(π/(sin(((4π)/7))))=(π/2) csc(((4π)/7))✓
I=1220π2sin17(x)cos17dx=12β(47,37)=12Γ(47)Γ(147)Γ(1)=12πsin(4π7)=π2csc(4π7)
Commented by Dwaipayan Shikari last updated on 15/Nov/20
With pleasure
Withpleasure
Answered by mathmax by abdo last updated on 14/Nov/20
I =∫_0 ^(π/2) (tanx)^(1/7)  dx ⇒I =∫_0 ^(π/2) sin^(1/7) x cos^(−(1/7)) xdx ⇒  2I =2∫_0 ^(π/2)  cos^(−(1/7)) x  sin^(1/7) xdx we know that  2 ∫_0 ^(π/2)  cos^(2p−1) x sin^(2q−1) xdx =B(p,q) =((Γ(p)Γ(q))/(Γ(p+q)))  2p−1=−(1/7) ⇒2p =1−(1/7) =(6/7) ⇒p =(3/7)  2q−1=(1/7) ⇒2q=1+(1/7) =(8/7) ⇒q=(4/7) ⇒   2 I =((Γ((3/7)).Γ((4/7)))/(Γ(1))) ⇒I =(1/2)Γ((3/7)).Γ(1−(3/7)) =(1/2).(π/(sin((π/7)))) ⇒  I =(π/(2sin((π/7))))
I=0π2(tanx)17dxI=0π2sin17xcos17xdx2I=20π2cos17xsin17xdxweknowthat20π2cos2p1xsin2q1xdx=B(p,q)=Γ(p)Γ(q)Γ(p+q)2p1=172p=117=67p=372q1=172q=1+17=87q=472I=Γ(37).Γ(47)Γ(1)I=12Γ(37).Γ(137)=12.πsin(π7)I=π2sin(π7)
Commented by mathmax by abdo last updated on 14/Nov/20
sorry I =(π/(2sin(((3π)/7))))
sorryI=π2sin(3π7)
Commented by Dwaipayan Shikari last updated on 15/Nov/20
Thanking you
Thankingyou
Commented by mathmax by abdo last updated on 15/Nov/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *