Menu Close

0-pi-2-x-sec-x-csc-x-dx-




Question Number 130958 by bramlexs22 last updated on 31/Jan/21
 ∫_( 0) ^( π/2)  (x/(sec x+csc x)) dx
0π/2xsecx+cscxdx
Commented by benjo_mathlover last updated on 31/Jan/21
M = ∫_0 ^(π/2) (x/(sec x+csc x)) dx =∫_0 ^(π/2)  (((π/2) −x)/(sec x+csc x)) dx  2M= (π/2)∫_0 ^(π/2) (dx/(sec x+csc x)) ; M=(π/4)∫_0 ^(π/2) ((sin x.cos x)/(sin x+cos x)) dx  M=(π/4)∫ _0 ^( π/2) ((sin x.cos x)/( (√2) sin (x+(π/4)))) dx
M=π/20xsecx+cscxdx=π/20π2xsecx+cscxdx2M=π2π/20dxsecx+cscx;M=π4π/20sinx.cosxsinx+cosxdxM=π4π/20sinx.cosx2sin(x+π4)dx
Commented by benjo_mathlover last updated on 31/Jan/21
M=(π/(4(√2))) ∫_(π/4) ^(3π/4)  (((1/( (√2)))(sin t−cos t).(1/( (√2)))(cos t+sin t))/(sin t)) dt  M= (π/(8(√2) ))∫_(π/4) ^(3π/4) ((2sin^2  t−1 )/(sin t)) dt = (π/(8(√2)))(−2cos t+ln ∣csc t + cot t ∣ )_(π/4) ^(3π/4)   M= (π/( 4(√2))) [ (√2) +ln ((√2)−1) ]
M=π423π/4π/412(sintcost).12(cost+sint)sintdtM=π823π/4π/42sin2t1sintdt=π82(2cost+lncsct+cott)π/43π/4M=π42[2+ln(21)]

Leave a Reply

Your email address will not be published. Required fields are marked *