Menu Close

0-pi-2-x-sin-8-x-cos-8-x-dx-




Question Number 157412 by cortano last updated on 23/Oct/21
 ∫_( 0) ^( (π/2))  (x/(sin^8 x+cos^8 x)) dx ?
0π2xsin8x+cos8xdx?
Answered by phanphuoc last updated on 23/Oct/21
∫_0 ^(π/2) ((π/2−x)/(sin^8 (π/2−x)+cos^8 (π/2−x)))dx=  =∫_0 ^(π/2) ((π/2−x)/(sin^8 x+cos^8 x))dx  →i=π/4∫_0 ^(π/2) ((d(tanx))/(tan^8 x+1))  =π/4∫_0 ^∞ (dt/(t^8 +1))=π/4.(π/8sin(π/8)=π^2 /32sin(π/8)
0π/2π/2xsin8(π/2x)+cos8(π/2x)dx==0π/2π/2xsin8x+cos8xdxi=π/40π/2d(tanx)tan8x+1=π/40dtt8+1=π/4.(π/8sin(π/8)=π2/32sin(π/8)
Commented by cortano last updated on 23/Oct/21
the result is (π^2 /(8(√2)))((√(2+(√2))) +3(√(2−(√2))) )
theresultisπ282(2+2+322)
Answered by phanphuoc last updated on 23/Oct/21
update  −∫_0 ^∞ dx/(x^n +1)=(π/n)sin(π/n)  you can watchs yputube
update0dx/(xn+1)=πnsinπnyoucanwatchsyputube

Leave a Reply

Your email address will not be published. Required fields are marked *