Menu Close

0-pi-2-x-sin-8-x-cos-8-x-dx-




Question Number 157412 by cortano last updated on 23/Oct/21
 ∫_( 0) ^( (π/2))  (x/(sin^8 x+cos^8 x)) dx ?
$$\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{\mathrm{sin}\:^{\mathrm{8}} {x}+\mathrm{cos}\:^{\mathrm{8}} {x}}\:{dx}\:? \\ $$
Answered by phanphuoc last updated on 23/Oct/21
∫_0 ^(π/2) ((π/2−x)/(sin^8 (π/2−x)+cos^8 (π/2−x)))dx=  =∫_0 ^(π/2) ((π/2−x)/(sin^8 x+cos^8 x))dx  →i=π/4∫_0 ^(π/2) ((d(tanx))/(tan^8 x+1))  =π/4∫_0 ^∞ (dt/(t^8 +1))=π/4.(π/8sin(π/8)=π^2 /32sin(π/8)
$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\pi/\mathrm{2}−{x}}{{sin}^{\mathrm{8}} \left(\pi/\mathrm{2}−{x}\right)+{cos}^{\mathrm{8}} \left(\pi/\mathrm{2}−{x}\right)}{dx}= \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\pi/\mathrm{2}−{x}}{{sin}^{\mathrm{8}} {x}+{cos}^{\mathrm{8}} {x}}{dx} \\ $$$$\rightarrow{i}=\pi/\mathrm{4}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{d}\left({tanx}\right)}{{tan}^{\mathrm{8}} {x}+\mathrm{1}} \\ $$$$=\pi/\mathrm{4}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{{t}^{\mathrm{8}} +\mathrm{1}}=\pi/\mathrm{4}.\left(\pi/\mathrm{8}{sin}\left(\pi/\mathrm{8}\right)=\pi^{\mathrm{2}} /\mathrm{32}{sin}\left(\pi/\mathrm{8}\right)\right. \\ $$
Commented by cortano last updated on 23/Oct/21
the result is (π^2 /(8(√2)))((√(2+(√2))) +3(√(2−(√2))) )
$${the}\:{result}\:{is}\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}\sqrt{\mathrm{2}}}\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}\:+\mathrm{3}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\:\right) \\ $$
Answered by phanphuoc last updated on 23/Oct/21
update  −∫_0 ^∞ dx/(x^n +1)=(π/n)sin(π/n)  you can watchs yputube
$${update} \\ $$$$−\int_{\mathrm{0}} ^{\infty} {dx}/\left({x}^{{n}} +\mathrm{1}\right)=\frac{\pi}{{n}}{sin}\frac{\pi}{{n}} \\ $$$${you}\:{can}\:{watchs}\:{yputube} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *