Question Number 89052 by M±th+et£s last updated on 15/Apr/20

Commented by abdomathmax last updated on 15/Apr/20
![I =∫_0 ^(π/2) (x/(tanx))dx ⇒I =_(tanx=t) ∫_0 ^∞ ((arctan(t))/t)(dt/(1+t^2 )) =∫_0 ^∞ ((arctan(t))/(t(1+t^2 )))dt let f(a) =∫_0 ^∞ ((arctan(at))/(t(1+t^2 )))dt f^′ (a) =∫_0 ^∞ (dt/((1+a^2 t^2 )(1+t^2 ))) =_(at=u) ∫_0 ^∞ (du/(a(1+u^2 )(1+(u^2 /a^2 ))))(du/a) =∫_0 ^∞ (du/((1+u^2 )(a^2 +u^2 ))) decomposition of F(u) =(1/((u^2 +1)(u^2 +a^2 ))) =((αu +β)/(u^2 +1)) +((λu +ρ)/(u^2 +a^2 )) F(−u)=F(u) ⇒ ((−αu +β)/(u^2 +1)) +((−λu +ρ)/(u^2 +a^2 )) =F(u) ⇒α=λ=0 and ρ=β ⇒ F(u)=(β/(u^2 +1)) +(ρ/(u^2 +a^2 )) lim_(u→+∞) u^2 F(u) =0 =β+ρ ⇒ρ=−β ⇒ F(u)=(β/(u^2 +1))−(β/(u^2 +a^2 )) F(0)=(1/a^2 ) =β−(β/a^2 ) ⇒1 =a^2 β−β =(a^2 −1)β ⇒ β =(1/(a^2 −1)) ⇒F(u)=(1/(a^2 −1))((1/(u^2 +1))−(1/(u^2 +a^2 ))) ⇒ f^′ (a)=(1/(a^2 −1))∫_0 ^∞ ((1/(u^2 +1))−(1/(u^2 +a^2 )))du ∫ (du/(u^2 +a^2 )) =_(u=az) ∫ ((adz)/(a^2 (1+z^2 ))) =(1/a) arctan((u/a)) ⇒ f^′ (a) =(1/(a^2 −1))[arctanu −(1/a)arctan((u/a))]_0 ^(+∞) =(1/(a^2 −1)){(π/2)−(π/(2a))} =(π/2)×(1/(a^2 −1))(1−(1/a)) =(π/(2(a^2 −1)))(((a−1)/a)) =(π/(2a(a+1))) ⇒ f(a) =(π/2) ∫ (da/(a(a+1))) +c =(π/2)∫((1/a)−(1/(a+1)))da +c =(π/2)ln∣(a/(a+1))∣ +c c =lim_(a→+∞) f(a) I =f(1) =(π/2)ln((1/2)) +c =c−(π/2)ln(2) rest to find c...](https://www.tinkutara.com/question/Q89057.png)
Commented by abdomathmax last updated on 15/Apr/20

Commented by M±th+et£s last updated on 15/Apr/20

Commented by mathmax by abdo last updated on 15/Apr/20
