Menu Close

0-pi-2-xcos-x-1-sin-x-2-dx-




Question Number 80416 by jagoll last updated on 03/Feb/20
∫_0 ^(π/2)  ((xcos x)/((1+sin x)^2 )) dx ?
π20xcosx(1+sinx)2dx?
Answered by MJS last updated on 03/Feb/20
∫((xcos x)/((1+sin x)^2 ))dx=       by parts       u=x → u′=1       v′=((cos x)/((1+sin x)^2 )) → v=−(1/(1+sin x))  =−(x/(1+sin x))+∫(dx/(1+sin x))=  =−(x/(1+sin x))+tan x −(1/(cos x))+C  ∫_0 ^(π/2) ((xcos x)/((1+sin x)^2 ))dx=       [lim_(x→(π/2))  (tan x −(1/(cos x)))=0]  =1−(π/4)
xcosx(1+sinx)2dx=bypartsu=xu=1v=cosx(1+sinx)2v=11+sinx=x1+sinx+dx1+sinx==x1+sinx+tanx1cosx+Cπ20xcosx(1+sinx)2dx=[limxπ2(tanx1cosx)=0]=1π4
Commented by jagoll last updated on 03/Feb/20
((−x)/(1+sin x))∣_0 ^(π/2) = ((−(π/2))/2)=−(π/4).  how get 1−(π/4) sir?
x1+sinx0π2=π22=π4.howget1π4sir?
Commented by jagoll last updated on 03/Feb/20
oo i understand sir . get 1
ooiunderstandsir.get1

Leave a Reply

Your email address will not be published. Required fields are marked *