Menu Close

0-pi-24-log-tan-d-Problem-source-brilliant-




Question Number 122013 by Dwaipayan Shikari last updated on 13/Nov/20
∫_0 ^(π/(24)) log(tanθ)dθ  Problem source: brilliant
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{24}}} {log}\left({tan}\theta\right){d}\theta \\ $$$${Problem}\:{source}:\:{brilliant} \\ $$
Commented by Dwaipayan Shikari last updated on 13/Nov/20
https://brilliant.org/problems/how-does-g-function-appears Explore the real problem on brilliant website or app
Commented by Dwaipayan Shikari last updated on 13/Nov/20
Commented by mindispower last updated on 13/Nov/20
what is G sir
$${what}\:{is}\:{G}\:{sir} \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 13/Nov/20
Barnes G function
$${Barnes}\:{G}\:{function} \\ $$
Commented by AbdullahMohammadNurusSafa last updated on 13/Nov/20
G=6.673×10^(−11) Nm^2 kg^(−2)   G is a Gravitational Constent.
$${G}=\mathrm{6}.\mathrm{673}×\mathrm{10}^{−\mathrm{11}} {Nm}^{\mathrm{2}} {kg}^{−\mathrm{2}} \\ $$$${G}\:{is}\:{a}\:{Gravitational}\:{Constent}. \\ $$
Commented by Dwaipayan Shikari last updated on 14/Nov/20
I also don′t have the knowledge of G function. It is a problem  on brilliant :)
$${I}\:{also}\:{don}'{t}\:{have}\:{the}\:{knowledge}\:{of}\:{G}\:{function}.\:{It}\:{is}\:{a}\:{problem} \\ $$$$\left.{on}\:{brilliant}\::\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *