Menu Close

0-pi-4-ln-1-2-cos-x-dx-




Question Number 161660 by amin96 last updated on 20/Dec/21
∫_0 ^(π/4) ln(1+(√2)cos(x))dx=???
0π4ln(1+2cos(x))dx=???
Answered by mindispower last updated on 21/Dec/21
∫_0 ^((π/4)r)   ln(1+(√2)cos((𝛑/4)−x))dx3  =ln(1+cos(x)+sin(x)))dx  =∫_0 ^(π/4) ln(2cos^2 ((x/2))+2sin((x/2))cos((x/2)))dx  =((π/4)ln(2)+∫_0 ^(π/4) ln(cos((x/2)))dx+n∫_0 ^(π/4) ln((√2)snin((x/2)+(π/4)))  =((3πln(2))/8)+2∫_0 ^(π/8) ln(cos(t))+2∫_0 ^(π/8) ln(sin(t+(π/4)))dt  =,((3πln(2))/8)4+2∫_(π/4) ^((3π)/8) ln(sin(u))d,Σ  ln(sin(x))=−ln(2)−Σ_(n≥1) ((cos(2nx))/n)  we get ((3πln(2))/8)−(π/4)ln(2)−Σ_(n≥1) ((sin(n3(π/4))−sin(((nπ)/2)))/n^2 )  =((πln(2))/8)−Cl_2 (((3π)/4))+Cl_2 ((π/2)),  Cl_2 (z)=Σ_(n≥1) ((sin(nz))/n^2 ),Clausen function  we can express withe elementry function
0π4rln(1+2cos(π4x))dx3=ln(1+cos(x)+sin(x)))dx=0π4ln(2cos2(x2)+2sin(x2)cos(x2))dx=(π4ln(2)+0π4ln(cos(x2))dx+n0π4ln(2snin(x2+π4))=3πln(2)8+20π8ln(cos(t))+20π8ln(sin(t+π4))dt=,3πln(2)84+2π43π8ln(sin(u))d,Σln(sin(x))=ln(2)n1cos(2nx)nweget3πln(2)8π4ln(2)n1sin(n3π4)sin(nπ2)n2=πln(2)8Cl2(3π4)+Cl2(π2),Cl2(z)=n1sin(nz)n2,Clausenfunctionwecanexpresswitheelementryfunction
Commented by Ar Brandon last updated on 21/Dec/21
ge^� nial !
genial´!
Answered by mathmax by abdo last updated on 21/Dec/21
f(a)=∫_0 ^(π/4) ln(1+acosx)dx   (a>1)  f^′ (a)=∫_0 ^(π/4) ((cosx)/(1+acosx))dx =(1/a)∫_0 ^(π/4) ((1+acosx−1)/(1+acosx))dx  =(π/(4a))−(1/a)∫_0 ^(π/4)  (dx/(1+acosx))  changement tan((x/2))=t give  ∫_0 ^(π/4)  (dx/(1+acosx))=∫_0 ^((√2)−1)   ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 )))))  =2∫_0 ^((√2)−1)   (dt/(1+t^2 +a−at^2 ))=2∫_0 ^((√2)−1)  (dt/((1−a)t^2 +1+a))  =−2∫_0 ^((√2)−1)  (dt/((a−1)t^2 −(1+a)))=((−2)/(a−1))∫_0 ^((√2)−1)  (dt/(t^2 −((a+1)/(a−1))))  =_(t=(√((a+1)/(a−1)))u)     ((−2)/(a−1)) ∫_0 ^(((√2)−1)(√((a−1)/(a+1))))     ((√((a+1)/(a−1)))/(((a+1)/(a−1))(u^2 −1)))du  =((a−1)/(a+1))×((√(a+1))/( (√(a−1))))×((−2)/(a−1))∫_0 ^(((√2)−1)(√((a−1)/(a+1))))  (du/(u^2 −1))  =((√(a−1))/( (√(a+1))))×((−2)/(a−1))∫... du  =−(1/( (√(a^2 −1))))∫_0 ^(((√2)−1)(√((a−1)/(a+1))))    ((1/(u−1))−(1/(u+1)))du  =(1/( (√(a^2 −1))))[ln∣((u+1)/(u−1))∣]_0 ^(((√2)−1)(√((a−1)/(a+1))))   =(1/( (√(a^2 −1)))){ln∣((((√2)−1)(√((a−1)/(a+1)))+1)/(((√2)−1)(√((a−1)/(a+1)))−1))∣} ⇒  f^′ (a)=(π/(4a)) −(1/(a(√(a^2 −1))))ln∣((((√2)−1)(√((a−1)/(a+1)))+1)/(((√2)−1)(√((a−1)/(a+1)))−1))∣ ⇒  f(a)=(π/4)lna−∫  (1/(a(√(a^2 −1))))ln(((((√2)−1)(√((a−1)/(a+1)))+1)/(((√2)−1)(√((a−1)/(a+1)))−1))) +C  ...be continued...
f(a)=0π4ln(1+acosx)dx(a>1)f(a)=0π4cosx1+acosxdx=1a0π41+acosx11+acosxdx=π4a1a0π4dx1+acosxchangementtan(x2)=tgive0π4dx1+acosx=0212dt(1+t2)(1+a1t21+t2)=2021dt1+t2+aat2=2021dt(1a)t2+1+a=2021dt(a1)t2(1+a)=2a1021dtt2a+1a1=t=a+1a1u2a10(21)a1a+1a+1a1a+1a1(u21)du=a1a+1×a+1a1×2a10(21)a1a+1duu21=a1a+1×2a1du=1a210(21)a1a+1(1u11u+1)du=1a21[lnu+1u1]0(21)a1a+1=1a21{ln(21)a1a+1+1(21)a1a+11}f(a)=π4a1aa21ln(21)a1a+1+1(21)a1a+11f(a)=π4lna1aa21ln((21)a1a+1+1(21)a1a+11)+Cbecontinued
Answered by Lordose last updated on 23/Dec/21
  Ω = ∫_0 ^(𝛑/4) ln(1+(√2)cos(x))dx = ∫_0 ^(𝛑/4) ln(1+cos(x)+sin(x))dx  Ω = ∫_0 ^(𝛑/4) ln(2cos^2 ((x/2)) + 2sin((x/2))cos((x/2)))dx       Ω = ln(2)∫_0 ^(𝛑/4) 1dx + ∫_0 ^(𝛑/4) ln(cos((x/2)))dx + ∫_0 ^(𝛑/4) ln(sin((x/2))+cos((x/2)))dx       Ω = ((𝛑ln(2))/4) + ∫_0 ^(𝛑/4) ln(cos((x/2)))dx + (1/2)ln(2)∫_0 ^(𝛑/4) 1dx + ∫_0 ^(𝛑/4) ln(sin((x/2)+(𝛑/4)))dx          N.B :: ∫_0 ^( x) ln(sin((t/2)))dt = −Cl_2 (x) − xln(2)                Cl_2 (𝛑) = 0; Cl_2 ((𝛑/2)) = G(Catalan′s Constant)  Ω = ((3𝛑ln(2))/8) + A + B  A =^((x/2) = (𝛑/2)−(u/2)) ∫_((3𝛑)/4) ^( 𝛑) ln(sin((u/2)))du = ∫_0 ^( 𝛑) ln(sin((u/2)))du − ∫_0 ^((3𝛑)/4) ln(sin((u/2)))du  A = −Cl_2 (𝛑) − 𝛑ln(2) + Cl_2 (((3𝛑)/4)) + ((3𝛑ln(2))/4)  A = Cl_2 (((3𝛑)/4)) − ((𝛑ln(2))/4)  B =^((x/2) = (u/2)−(𝛑/4))  ∫_(𝛑/2) ^((3𝛑)/4) ln(sin((u/2)))du = ∫_0 ^((3𝛑)/4) ln(sin((u/2)))du − ∫_0 ^(𝛑/2) ln(sin((u/2)))du  B = −Cl_2 (((3𝛑)/4)) − ((3𝛑ln(2))/4) + Cl_2 ((𝛑/2)) + ((𝛑ln(2))/2)  B = Cl_2 ((𝛑/2)) −Cl_2 (((3𝛑)/4)) − ((𝛑ln(2))/4)  Ω = ((3𝛑ln(2))/8) + A + B  Ω = ((3𝛑ln(2))/8) + Cl_2 (((3𝛑)/4)) − ((𝛑ln(2))/4) + Cl_2 ((𝛑/2))− Cl_2 (((3𝛑)/4)) − ((𝛑ln(2))/4)  Ω = Cl_2 ((𝛑/2)) − ((𝛑ln(2))/8)  𝛀 = G − ((𝛑log(2))/8)
Ω=0π4ln(1+2cos(x))dx=0π4ln(1+cos(x)+sin(x))dxΩ=0π4ln(2cos2(x2)+2sin(x2)cos(x2))dxΩ=ln(2)0π41dx+0π4ln(cos(x2))dx+0π4ln(sin(x2)+cos(x2))dxΩ=πln(2)4+0π4ln(cos(x2))dx+12ln(2)0π41dx+0π4ln(sin(x2+π4))dxN.B::0xln(sin(t2))dt=Cl2(x)xln(2)Cl2(π)=0;Cl2(π2)=G(CatalansConstant)Ω=3πln(2)8+A+BA=x2=π2u23π4πln(sin(u2))du=0πln(sin(u2))du03π4ln(sin(u2))duA=Cl2(π)πln(2)+Cl2(3π4)+3πln(2)4A=Cl2(3π4)πln(2)4B=x2=u2π4π23π4ln(sin(u2))du=03π4ln(sin(u2))du0π2ln(sin(u2))duB=Cl2(3π4)3πln(2)4+Cl2(π2)+πln(2)2B=Cl2(π2)Cl2(3π4)πln(2)4Ω=3πln(2)8+A+BΩ=3πln(2)8+Cl2(3π4)πln(2)4+Cl2(π2)Cl2(3π4)πln(2)4Ω=Cl2(π2)πln(2)8Ω=Gπlog(2)8

Leave a Reply

Your email address will not be published. Required fields are marked *