Question Number 161660 by amin96 last updated on 20/Dec/21

Answered by mindispower last updated on 21/Dec/21

Commented by Ar Brandon last updated on 21/Dec/21

Answered by mathmax by abdo last updated on 21/Dec/21
![f(a)=∫_0 ^(π/4) ln(1+acosx)dx (a>1) f^′ (a)=∫_0 ^(π/4) ((cosx)/(1+acosx))dx =(1/a)∫_0 ^(π/4) ((1+acosx−1)/(1+acosx))dx =(π/(4a))−(1/a)∫_0 ^(π/4) (dx/(1+acosx)) changement tan((x/2))=t give ∫_0 ^(π/4) (dx/(1+acosx))=∫_0 ^((√2)−1) ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 ))))) =2∫_0 ^((√2)−1) (dt/(1+t^2 +a−at^2 ))=2∫_0 ^((√2)−1) (dt/((1−a)t^2 +1+a)) =−2∫_0 ^((√2)−1) (dt/((a−1)t^2 −(1+a)))=((−2)/(a−1))∫_0 ^((√2)−1) (dt/(t^2 −((a+1)/(a−1)))) =_(t=(√((a+1)/(a−1)))u) ((−2)/(a−1)) ∫_0 ^(((√2)−1)(√((a−1)/(a+1)))) ((√((a+1)/(a−1)))/(((a+1)/(a−1))(u^2 −1)))du =((a−1)/(a+1))×((√(a+1))/( (√(a−1))))×((−2)/(a−1))∫_0 ^(((√2)−1)(√((a−1)/(a+1)))) (du/(u^2 −1)) =((√(a−1))/( (√(a+1))))×((−2)/(a−1))∫... du =−(1/( (√(a^2 −1))))∫_0 ^(((√2)−1)(√((a−1)/(a+1)))) ((1/(u−1))−(1/(u+1)))du =(1/( (√(a^2 −1))))[ln∣((u+1)/(u−1))∣]_0 ^(((√2)−1)(√((a−1)/(a+1)))) =(1/( (√(a^2 −1)))){ln∣((((√2)−1)(√((a−1)/(a+1)))+1)/(((√2)−1)(√((a−1)/(a+1)))−1))∣} ⇒ f^′ (a)=(π/(4a)) −(1/(a(√(a^2 −1))))ln∣((((√2)−1)(√((a−1)/(a+1)))+1)/(((√2)−1)(√((a−1)/(a+1)))−1))∣ ⇒ f(a)=(π/4)lna−∫ (1/(a(√(a^2 −1))))ln(((((√2)−1)(√((a−1)/(a+1)))+1)/(((√2)−1)(√((a−1)/(a+1)))−1))) +C ...be continued...](https://www.tinkutara.com/question/Q161738.png)
Answered by Lordose last updated on 23/Dec/21
