Question Number 161660 by amin96 last updated on 20/Dec/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}=??? \\ $$
Answered by mindispower last updated on 21/Dec/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}{r}} \\ $$$${ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}−{x}\right)\right){dx}\mathrm{3} \\ $$$$\left.={ln}\left(\mathrm{1}+{cos}\left({x}\right)+{sin}\left({x}\right)\right)\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)\right){dx} \\ $$$$=\left(\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left(\frac{{x}}{\mathrm{2}}\right)\right){dx}+{n}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}{snin}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\right)\right. \\ $$$$=\frac{\mathrm{3}\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}}+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{8}}} {ln}\left({cos}\left({t}\right)\right)+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{8}}} {ln}\left({sin}\left({t}+\frac{\pi}{\mathrm{4}}\right)\right){dt} \\ $$$$=,\frac{\mathrm{3}\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}}\mathrm{4}+\mathrm{2}\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{3}\pi}{\mathrm{8}}} {ln}\left({sin}\left({u}\right)\right){d},\Sigma \\ $$$${ln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$${we}\:{get}\:\frac{\mathrm{3}\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}}−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({n}\mathrm{3}\frac{\pi}{\mathrm{4}}\right)−{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)}{{n}^{\mathrm{2}} } \\ $$$$=\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}}−{Cl}_{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{4}}\right)+{Cl}_{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\right), \\ $$$${Cl}_{\mathrm{2}} \left({z}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({nz}\right)}{{n}^{\mathrm{2}} },{Clausen}\:{function} \\ $$$${we}\:{can}\:{express}\:{withe}\:{elementry}\:{function} \\ $$$$ \\ $$$$ \\ $$
Commented by Ar Brandon last updated on 21/Dec/21