Menu Close

0-pi-4-ln-tanx-1-dx-




Question Number 109709 by nimnim last updated on 25/Aug/20
     ∫_(0 ) ^(π/4) ln(tanx+1)dx
$$\:\:\:\:\:\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tanx}+\mathrm{1}\right)\mathrm{dx} \\ $$
Answered by mnjuly1970 last updated on 25/Aug/20
I=∫_0 ^(π/4) ln(1+tanx)dx=^(∫_a ^( b) f(x)dx=∫_a ^( b) f(a+b−x)dx) ∫_0 ^( (π/4)) ln(1+tan((π/4)−x))dx  I=∫_0 ^( (π/4)) ln(1+((1−tan(x))/(1+tan(x))))dx=∫_0 ^(π/4) ln((2/(1+tan(x))))dx  I=∫_0 ^(π/4) ln(2)dx −I⇒ 2I=(π/4)ln(2)  I:= (π/8)ln(2)   .....        solved by M.N.july 1970#
$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tanx}\right){dx}\overset{\int_{{a}} ^{\:{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{\:{b}} {f}\left({a}+{b}−{x}\right){dx}} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right){dx} \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}−{tan}\left({x}\right)}{\mathrm{1}+{tan}\left({x}\right)}\right){dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tan}\left({x}\right)}\right){dx} \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{2}\right){dx}\:−\mathrm{I}\Rightarrow\:\mathrm{2I}=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right) \\ $$$$\mathrm{I}:=\:\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:\:\:…..\:\:\: \\ $$$$\:\:\:{solved}\:{by}\:\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}# \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 25/Aug/20
grateful..
$${grateful}.. \\ $$
Commented by nimnim last updated on 25/Aug/20
Thank you Sir.
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}. \\ $$
Answered by mathmax by abdo last updated on 25/Aug/20
I =∫_0 ^(π/4)  ln(1+tant)dt  ⇒I =_(t=(π/4)−x)    ∫_0 ^(π/4)  ln(1+tan((π/4)−x))dx  =∫_0 ^(π/4)  ln(1+((1−tanx)/(1+tanx)))dx =∫_0 ^(π/4)  ln((2/(1+tanx)))dx  =(π/4)ln(2)−I ⇒2I =(π/4)ln(2) ⇒I =(π/8)ln(2)
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tant}\right)\mathrm{dt}\:\:\Rightarrow\mathrm{I}\:=_{\mathrm{t}=\frac{\pi}{\mathrm{4}}−\mathrm{x}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}−\mathrm{tanx}}{\mathrm{1}+\mathrm{tanx}}\right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tanx}}\right)\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{I}\:\Rightarrow\mathrm{2I}\:=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\mathrm{I}\:=\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *