Menu Close

0-pi-4-log-1-tan-x-dx-




Question Number 151421 by peter frank last updated on 21/Aug/21
∫_0 ^(π/4) log (1+tan x)dx
0π4log(1+tanx)dx
Commented by puissant last updated on 21/Aug/21
x=(π/4)−t → dx=−dt  Q=∫_(π/4) ^0 ln(1+tan((π/4)−t))(−dt)  =∫_0 ^(π/4) ln(1+((1−tant)/(1+tant)))dt  =∫_0 ^(π/4) ln(((1+tant)/(1+tant))+((1−tant)/(1+tant)))dt  ⇒ Q=∫_0 ^(π/4) ln((2/(1+tant)))dt  ⇒ Q=∫_0 ^(π/4) ln2dx−∫_0 ^(π/4) ln(1+tant)dt  ⇒ 2Q=(π/4)ln2            ∵∴  Q=(π/8)ln2...
x=π4tdx=dtQ=π40ln(1+tan(π4t))(dt)=0π4ln(1+1tant1+tant)dt=0π4ln(1+tant1+tant+1tant1+tant)dtQ=0π4ln(21+tant)dtQ=0π4ln2dx0π4ln(1+tant)dt2Q=π4ln2∵∴Q=π8ln2
Commented by peter frank last updated on 21/Aug/21
thank you
thankyou
Answered by peter frank last updated on 21/Aug/21
x=(π/4)−θ  dx=−dθ  (0,(π/4))⇔((π/4),0)  ∫_0 ^(π/4) log [1+tan ((π/4)−θ)]dθ  ∫_0 ^(π/4) log [1+((tan (π/4)−tan θ)/(1+tan (π/4)tan θ))]  ∫_0 ^(π/4) log[ (2/(1+tan θ))]dθ  ∫_0 ^(π/4) log 2dθ−∫_0 ^(π/4) log (1+tan θ)  2I=log 2[θ]_0 ^(π/4)   I=(π/8)log 2
x=π4θdx=dθ(0,π4)(π4,0)0π4log[1+tan(π4θ)]dθ0π4log[1+tanπ4tanθ1+tanπ4tanθ]0π4log[21+tanθ]dθ0π4log2dθ0π4log(1+tanθ)2I=log2[θ]0π4I=π8log2
Answered by mathmax by abdo last updated on 21/Aug/21
f(a)=∫_0 ^(π/4) log(1+atanx)dx     (a>0) ⇒  f^′ (a)=∫_0 ^(π/4) ((tanx)/(1+atanx))=(1/a)∫_0 ^(π/4)  ((1+atanx−1)/(1+atanx))dx  =(π/(4a))−(1/a)∫_0 ^(π/4)  (dx/(1+atanx)) [we have  ∫_0 ^(π/4)  (dx/(1+atanx)) =_(tanx=t)   ∫_0 ^(1 )  (dt/((1+t^2 )(1+at)))  F(t)=(1/((at+1)(t^2  +1)))=(α/(at+1))+((mt+n)/(t^2  +1))  α=(1/((1/a^2 )+1))=(a^2 /(1+a^2 ))  lim_(t→+∞) tF(t)=(α/a) +m ⇒m=−(α/a)=−(a/(1+a^2 ))  ⇒F(t)=(a^2 /((1+a^2 )(at+1)))+((−(a/(1+a^2 ))t +n)/(t^2  +1))  F(0)=(a^2 /(1+a^2 )) +n=1 ⇒n=1−(a^2 /(1+a^2 ))=(1/(1+a^2 )) ⇒  F(t)=(a^2 /((a^2  +1)(at+1)))+((−(a/(a^2  +1))t+(1/(1+a^2 )))/(t^2  +1))  ⇒∫_0 ^1  F(t)dt=(a^2 /((a^2  +1)))∫_0 ^1  (dt/(at+1))−(1/(a^2  +1))∫_0 ^(1 ) ((at−1)/(t^2  +1))dt  =(a/(a^2  +1))[ln(at+1)]_0 ^1 −(a/(2(a^2  +1)))[ln(t^2  +1)]_0 ^1  +(1/(a^2  +1))(π/4)  =((aln(1+a))/(a^2  +1))−((ln2)/2)×(a/(a^2 +1)) +(π/(4(a^2  +1))) ⇒  f^′ (a)=(π/(4a))−((ln(1+a))/(a^2  +1))+((ln2)/(2(a^(2 ) +1))) −(π/(4a(a^2  +1)))  f(1)=f(1)−f(0)=∫_0 ^1  f^′ (a)da=∫_0 ^(π/4) log(1+tant)dt  =∫_0 ^1 (π/(4a))(1−(1/(a^2  +1)))da−∫_0 ^1  ((ln(1+a))/(a^2  +1))da+((ln2)/2)∫_0 ^1  (da/(1+a^2 ))  =(π/4)∫_0 ^1 (a/(a^2  +1))da−∫_0 ^1  ((ln(1+a))/(1+a^2 ))da+(π/4)×((ln2)/2)  =(π/8)[ln(a^2 +1)]_0 ^1 +((πln2)/8)−∫_0 ^1  ((ln(1+a))/(1+a^2 ))da (a=tanθ)  =((πln(2))/8)+((πln2)/8)−∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =((πln2)/4)−I ⇒2I=((πln2)/4) ⇒I=(π/8)ln(2) ⇒  ∫_0 ^(π/4) ln(1+tanθ)dθ=(π/8)ln(2)
f(a)=0π4log(1+atanx)dx(a>0)f(a)=0π4tanx1+atanx=1a0π41+atanx11+atanxdx=π4a1a0π4dx1+atanx[wehave0π4dx1+atanx=tanx=t01dt(1+t2)(1+at)F(t)=1(at+1)(t2+1)=αat+1+mt+nt2+1α=11a2+1=a21+a2limt+tF(t)=αa+mm=αa=a1+a2F(t)=a2(1+a2)(at+1)+a1+a2t+nt2+1F(0)=a21+a2+n=1n=1a21+a2=11+a2F(t)=a2(a2+1)(at+1)+aa2+1t+11+a2t2+101F(t)dt=a2(a2+1)01dtat+11a2+101at1t2+1dt=aa2+1[ln(at+1)]01a2(a2+1)[ln(t2+1)]01+1a2+1π4=aln(1+a)a2+1ln22×aa2+1+π4(a2+1)f(a)=π4aln(1+a)a2+1+ln22(a2+1)π4a(a2+1)f(1)=f(1)f(0)=01f(a)da=0π4log(1+tant)dt=01π4a(11a2+1)da01ln(1+a)a2+1da+ln2201da1+a2=π401aa2+1da01ln(1+a)1+a2da+π4×ln22=π8[ln(a2+1)]01+πln2801ln(1+a)1+a2da(a=tanθ)=πln(2)8+πln280π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=πln24I2I=πln24I=π8ln(2)0π4ln(1+tanθ)dθ=π8ln(2)
Commented by peter frank last updated on 21/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *