Question Number 151421 by peter frank last updated on 21/Aug/21

Commented by puissant last updated on 21/Aug/21

Commented by peter frank last updated on 21/Aug/21

Answered by peter frank last updated on 21/Aug/21
![x=(π/4)−θ dx=−dθ (0,(π/4))⇔((π/4),0) ∫_0 ^(π/4) log [1+tan ((π/4)−θ)]dθ ∫_0 ^(π/4) log [1+((tan (π/4)−tan θ)/(1+tan (π/4)tan θ))] ∫_0 ^(π/4) log[ (2/(1+tan θ))]dθ ∫_0 ^(π/4) log 2dθ−∫_0 ^(π/4) log (1+tan θ) 2I=log 2[θ]_0 ^(π/4) I=(π/8)log 2](https://www.tinkutara.com/question/Q151422.png)
Answered by mathmax by abdo last updated on 21/Aug/21
![f(a)=∫_0 ^(π/4) log(1+atanx)dx (a>0) ⇒ f^′ (a)=∫_0 ^(π/4) ((tanx)/(1+atanx))=(1/a)∫_0 ^(π/4) ((1+atanx−1)/(1+atanx))dx =(π/(4a))−(1/a)∫_0 ^(π/4) (dx/(1+atanx)) [we have ∫_0 ^(π/4) (dx/(1+atanx)) =_(tanx=t) ∫_0 ^(1 ) (dt/((1+t^2 )(1+at))) F(t)=(1/((at+1)(t^2 +1)))=(α/(at+1))+((mt+n)/(t^2 +1)) α=(1/((1/a^2 )+1))=(a^2 /(1+a^2 )) lim_(t→+∞) tF(t)=(α/a) +m ⇒m=−(α/a)=−(a/(1+a^2 )) ⇒F(t)=(a^2 /((1+a^2 )(at+1)))+((−(a/(1+a^2 ))t +n)/(t^2 +1)) F(0)=(a^2 /(1+a^2 )) +n=1 ⇒n=1−(a^2 /(1+a^2 ))=(1/(1+a^2 )) ⇒ F(t)=(a^2 /((a^2 +1)(at+1)))+((−(a/(a^2 +1))t+(1/(1+a^2 )))/(t^2 +1)) ⇒∫_0 ^1 F(t)dt=(a^2 /((a^2 +1)))∫_0 ^1 (dt/(at+1))−(1/(a^2 +1))∫_0 ^(1 ) ((at−1)/(t^2 +1))dt =(a/(a^2 +1))[ln(at+1)]_0 ^1 −(a/(2(a^2 +1)))[ln(t^2 +1)]_0 ^1 +(1/(a^2 +1))(π/4) =((aln(1+a))/(a^2 +1))−((ln2)/2)×(a/(a^2 +1)) +(π/(4(a^2 +1))) ⇒ f^′ (a)=(π/(4a))−((ln(1+a))/(a^2 +1))+((ln2)/(2(a^(2 ) +1))) −(π/(4a(a^2 +1))) f(1)=f(1)−f(0)=∫_0 ^1 f^′ (a)da=∫_0 ^(π/4) log(1+tant)dt =∫_0 ^1 (π/(4a))(1−(1/(a^2 +1)))da−∫_0 ^1 ((ln(1+a))/(a^2 +1))da+((ln2)/2)∫_0 ^1 (da/(1+a^2 )) =(π/4)∫_0 ^1 (a/(a^2 +1))da−∫_0 ^1 ((ln(1+a))/(1+a^2 ))da+(π/4)×((ln2)/2) =(π/8)[ln(a^2 +1)]_0 ^1 +((πln2)/8)−∫_0 ^1 ((ln(1+a))/(1+a^2 ))da (a=tanθ) =((πln(2))/8)+((πln2)/8)−∫_0 ^(π/4) ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ =((πln2)/4)−I ⇒2I=((πln2)/4) ⇒I=(π/8)ln(2) ⇒ ∫_0 ^(π/4) ln(1+tanθ)dθ=(π/8)ln(2)](https://www.tinkutara.com/question/Q151427.png)
Commented by peter frank last updated on 21/Aug/21
