Menu Close

0-pi-4-sec-2-x-tan-x-sec-x-dx-




Question Number 182648 by cortano1 last updated on 12/Dec/22
  ∫_0 ^(π/4)  ((sec^2 x)/(tan x−sec x)) dx =?
π/40sec2xtanxsecxdx=?
Answered by Acem last updated on 12/Dec/22
 tan x − sec x= t  ..... m   sec x (sec x− tan x) dx= dt   sec x dx= ((−dt)/t)  ... i   ∗ sec^2  x − tan^2  x= 1 ⇔ (sec x+ tan x) (sec x− tan x)=1   ⇒ sec x + tan x= ((−1)/t)   ∗   &  sec x − tan x= −t   ∗∗^( From m)    Sum stars: sec x= −(1/2)((1/t) + t) ...ii       i, ii in integ. : I= ∫ ((sec x sec x dx)/(tan x− sec x))= (1/2)∫ ((((1/t) + t))/t^( 2) ) dt   I= (1/2) ∫ ((1/t) + (1/t^3 )) dt,  from m { ((m=0   : t= −1)),((m= (π/4) : t= 1−(√2)  )) :}   a= (1/2) ∫_(−1) ^( 1−(√2))  ((1/t) + (1/t^3 )) dt   a= (1/2) [ln ∣t∣ − (1/(2 t^2 ))]∣_( −1) ^(1−(√2))    ≈ − 1. 648
tanxsecx=t..msecx(secxtanx)dx=dtsecxdx=dttisec2xtan2x=1(secx+tanx)(secxtanx)=1secx+tanx=1t&secxtanx=tFrommSumstars:secx=12(1t+t)iii,iiininteg.:I=secxsecxdxtanxsecx=12(1t+t)t2dtI=12(1t+1t3)dt,fromm{m=0:t=1m=π4:t=12a=12112(1t+1t3)dta=12[lnt12t2]1121.648
Answered by FelipeLz last updated on 12/Dec/22
     tan(x) = u → du = sec^2 (x)dx       x = 0 → u = 0       x = (π/4) → u = 1  I =∫_0 ^(π/4) ((sec^2 (x))/(tan(x)−sec(x)))dx = ∫_0 ^1 (1/(u−(√(u^2 +1))))du = ∫_0 ^1 (1/(u−(√(u^2 +1))))×((u+(√(u^2 +1)))/(u+(√(u^2 +1))))du = ∫_0 ^1 ((u+(√(u^2 +1)))/(u^2 −u^2 −1))du    I = −∫_0 ^1 udu−∫_0 ^1 (√(u^2 +1))du   I = −∫_0 ^(π/4) tan(x)sec^2 (x)dx−∫_0 ^(π/4) sec^3 (x)dx              ∫tan(x)sec^2 (x)dx = sec^2 (x)−∫tan(x)sec^2 (x)dx       2∫tan(x)sec^2 (x)dx = sec^2 (x)       ∫tan(x)sec^2 (x)dx = (1/2)sec^2 (x)          ∫sec^3 (x)dx = sec(x)tan(x)−∫sec(x)tan^2 (x)dx        ∫sec^3 (x)dx = sec(x)tan(x)−∫sec^3 (x)dx+∫sec(x)dx       2∫sec^3 (x)dx = sec(x)tan(x)+ln∣sec(x)+tan(x)∣       ∫sec^3 (x)dx = (1/2)sec(x)tan(x)+(1/2)ln∣sec(x)+tan(x)∣     I = −(1/2)[sec^2 (x)]_0 ^(π/4) −(1/2)[sec(x)tan(x)+ln∣sec(x)+tan(x)∣]_0 ^(π/4)   I = −(1/2)[((√2))^2 −1^2 ]−(1/2)[(√2)×1+ln∣(√2)+1∣−1×0−ln∣1+0∣]  I = −(1/2)[1+(√2)+ln(1+(√2))]
tan(x)=udu=sec2(x)dxx=0u=0x=π4u=1I=π/40sec2(x)tan(x)sec(x)dx=101uu2+1du=101uu2+1×u+u2+1u+u2+1du=10u+u2+1u2u21duI=10udu10u2+1duI=π/40tan(x)sec2(x)dxπ/40sec3(x)dxtan(x)sec2(x)dx=sec2(x)tan(x)sec2(x)dx2tan(x)sec2(x)dx=sec2(x)tan(x)sec2(x)dx=12sec2(x)sec3(x)dx=sec(x)tan(x)sec(x)tan2(x)dxsec3(x)dx=sec(x)tan(x)sec3(x)dx+sec(x)dx2sec3(x)dx=sec(x)tan(x)+lnsec(x)+tan(x)sec3(x)dx=12sec(x)tan(x)+12lnsec(x)+tan(x)I=12[sec2(x)]0π/412[sec(x)tan(x)+lnsec(x)+tan(x)]0π/4I=12[(2)212]12[2×1+ln2+11×0ln1+0]I=12[1+2+ln(1+2)]
Answered by MJS_new last updated on 12/Dec/22
∫((sec^2  x)/(tan x −sec x))dx=∫(dx/(sin 2x −2cos x))=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =2∫((t^2 +1)/((t−1)^3 (t+1)))dt=  =(1/2)∫((1/(t−1))−(1/(t+1)))dt+∫((t+1)/((t−1)^3 ))dt=  =(1/2)ln ((t−1)/(t+1)) −(t/((t−1)^2 ))=  =(1/2)(ln ∣tan x −sec x∣ −(tan x + sec x)tan x)+C  ⇒ answer is (1/2)ln (−1+(√2)) −((1+(√2))/2)
sec2xtanxsecxdx=dxsin2x2cosx=[t=tanx2dx=2dtt2+1]=2t2+1(t1)3(t+1)dt==12(1t11t+1)dt+t+1(t1)3dt==12lnt1t+1t(t1)2==12(lntanxsecx(tanx+secx)tanx)+Cansweris12ln(1+2)1+22

Leave a Reply

Your email address will not be published. Required fields are marked *