Menu Close

0-pi-4-sin-d-cos-sin-d-where-zeta-




Question Number 124963 by 676597498 last updated on 07/Dec/20
∫_0 ^( (π/4)) ((sin(ς)dς)/(cos(ς)+sin(ς)))dς  where ς : zeta
0π4sin(ς)dςcos(ς)+sin(ς)dςwhereς:zeta
Commented by MJS_new last updated on 07/Dec/20
syntax error.
syntaxerror.
Answered by Dwaipayan Shikari last updated on 07/Dec/20
∫_0 ^(π/4) (1/(tan(ζ)+1))dζ  =∫_0 ^1 (1/(t+1)).(1/(t^2 +1))dt             tanζ=t⇒sec^2 ζ=(dt/dζ)  =(1/2)∫_0 ^1 (1/(t+1))−((t−1)/(t^2 +1))dt  =(1/2)log(2)−(1/4)∫_0 ^1 ((2t)/(t^2 +1))+(1/2)∫_0 ^1 (1/(1+t^2 ))dt  =−(1/4)log(2)+(π/8)
0π41tan(ζ)+1dζ=011t+1.1t2+1dttanζ=tsec2ζ=dtdζ=12011t+1t1t2+1dt=12log(2)14012tt2+1+120111+t2dt=14log(2)+π8
Commented by 676597498 last updated on 07/Dec/20
thanks  but there are 2 (dς)  look again  it is ∫((sin(ς)dς)/(cos(ς)+sin(ς)))dς
thanksbutthereare2(dς)lookagainitissin(ς)dςcos(ς)+sin(ς)dς
Commented by Dwaipayan Shikari last updated on 07/Dec/20
Sorry but it doesn′t make any sense to me
Sorrybutitdoesntmakeanysensetome
Commented by 676597498 last updated on 07/Dec/20
it makes sense
itmakessense
Commented by mr W last updated on 07/Dec/20
it makes No sense!
itmakes\boldsymbolNosense!
Commented by MJS_new last updated on 07/Dec/20
if it makes sense, what sense does it make?
ifitmakessense,whatsensedoesitmake?
Answered by mathmax by abdo last updated on 07/Dec/20
A =∫_0 ^(π/4)  ((sinx)/(cosx +sinx))dx  we do the changement tan((x/2))=t ⇒  A =∫_0 ^((√2)−1)   (((2t)/(1+t^2 ))/(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))))((2dt)/(1+t^2 )) =∫_0 ^((√2)−1) ((4t)/((t^2  +1)(−t^2  +2t+1)))dt  =−4 ∫_0 ^((√2)−1)  ((tdt)/((t^2  +1)(t^2 −2t−1))) let decompose  F(t)=(t/((t^2  +1)(t^2 −2t−1)))  t^2 −2t−1→Δ^′  =1+1=2 ⇒t_1 =1+(√2) and t_2 =1−(√2) ⇒  F(t)=(t/((t−t_1 )(t−t_2 )(t^2  +1))) =(a/(t−t_1 )) +(b/(t−t_2 )) +((mt +n)/(t^2  +1))  a=(t_1 /(2(√2)(t_1 ^2  +1))) =((1+(√2))/(2(√2)(3+2(√2)+1)))=((1+(√2))/(2(√2)(4+2(√2))))=((1+(√2))/(8(√2)+8))=(1/8)  b =(t_2 /(−2(√2)(t_2 ^2  +1))) =((1−(√2))/(−2(√2)(3−2(√2)+1)))=((1−(√2))/(−2(√2)(4−2(√2))))  =((1−(√2))/(−8(√2)+8)) =(1/8)  lim_(t→+∞)  tF(t)=0=a+b+m ⇒m=−(1/4)  F(o)=0 =−(a/t_1 )−(b/t_2 ) +n ⇒n=(a/t_1 )+(b/t_2 ) =(1/(8(1+(√2))))+(1/(8(1−(√2))))  =(1/8)((2/((−1))))=−(1/4) ⇒  F(t)=(1/(8(t−(1+(√2))))+(1/(8(t−(1−(√2)))))−(1/4)×((t+1)/(t^2  +1)) ⇒  ∫_0 ^((√2)−1)  F(t)dt =(1/8)∫_0 ^((√2)−1)  (dt/(t−1−(√2))) +(1/8)∫_0 ^((√2)−1)  (dt/(t−1+(√2)))  −(1/8)∫_0 ^((√2)−1) ((2t)/(t^2  +1))−(1/4)∫_0 ^((√2)−1)  (dt/(t^2  +1))  =(1/8)[ln∣(t−1)^2 −2∣]_0 ^((√2)−1) −(1/8)[ln(t^2  +1)]_0 ^((√2)−1) −(1/4)[arctant]_0 ^((√2)−1)   =(1/8){ln∣((√2)−2)^2 −2∣−(1/8)ln(((√2)−1)^2 +1)−(1/4)×(π/8)  =(1/8)ln∣2−4(√2)+4−2∣−(1/8)ln(3−2(√2)+1)−(π/(32))  =(1/8)ln(4(√2)−4)−(1/8)ln(4−2(√2))−(π/(32)) ⇒  I=−(1/2)ln(4(√2)−4)+(1/2)ln(4−2(√2))+(π/8)
A=0π4sinxcosx+sinxdxwedothechangementtan(x2)=tA=0212t1+t21t21+t2+2t1+t22dt1+t2=0214t(t2+1)(t2+2t+1)dt=4021tdt(t2+1)(t22t1)letdecomposeF(t)=t(t2+1)(t22t1)t22t1Δ=1+1=2t1=1+2andt2=12F(t)=t(tt1)(tt2)(t2+1)=att1+btt2+mt+nt2+1a=t122(t12+1)=1+222(3+22+1)=1+222(4+22)=1+282+8=18b=t222(t22+1)=1222(322+1)=1222(422)=1282+8=18limt+tF(t)=0=a+b+mm=14F(o)=0=at1bt2+nn=at1+bt2=18(1+2)+18(12)=18(2(1))=14F(t)=18(t(1+2)+18(t(12))14×t+1t2+1021F(t)dt=18021dtt12+18021dtt1+2180212tt2+114021dtt2+1=18[ln(t1)22]02118[ln(t2+1)]02114[arctant]021=18{ln(22)2218ln((21)2+1)14×π8=18ln242+4218ln(322+1)π32=18ln(424)18ln(422)π32I=12ln(424)+12ln(422)+π8
Commented by talminator2856791 last updated on 07/Dec/20
 abdo to the rescue!!!!!
abdototherescue!!!!!abdototherescue!!!!!

Leave a Reply

Your email address will not be published. Required fields are marked *