Menu Close

0-pi-4-sin-x-sin-x-cos-x-dx-




Question Number 127528 by bramlexs22 last updated on 30/Dec/20
 ∫_0 ^( π/4) ((sin x)/(sin x+cos x)) dx =?
0π/4sinxsinx+cosxdx=?
Answered by liberty last updated on 30/Dec/20
 Let L = ∫_0 ^( π/4) ((sin x)/(sin x+cos x)) dx    and let Y = ∫_0 ^( π/4) ((cos x)/(sin x+cos x))dx  (1) L+Y = ∫_0 ^( π/4) ((sin x+cos x)/(sin x+cos x)) dx = (π/4)  (2) L−Y = ∫_0 ^( π/4) ((sin x−cos x)/(sin x+cos x)) dx                    = −∫_0 ^( π/4) ((d(sin x+cos x))/(sin x+cos x))                    =−[ ln (sin x+cos x) ]_0 ^(π/4)                     = −(1/2)ln (2)  (3) L = (((L+Y)+(L−Y))/2) = (π/8)−(1/4)ln (2)
LetL=0π/4sinxsinx+cosxdxandletY=0π/4cosxsinx+cosxdx(1)L+Y=0π/4sinx+cosxsinx+cosxdx=π4(2)LY=0π/4sinxcosxsinx+cosxdx=0π/4d(sinx+cosx)sinx+cosx=[ln(sinx+cosx)]0π/4=12ln(2)(3)L=(L+Y)+(LY)2=π814ln(2)
Commented by bramlexs22 last updated on 30/Dec/20
amazing...
amazing
Answered by Dwaipayan Shikari last updated on 30/Dec/20
∫_0 ^1 (t/(t+1)).(1/(t^2 +1))dt                tanx=t  =(1/2)∫_0 ^1 t((1/(t+1))−((t−1)/(t^2 +1)))dt  =(1/2)∫_0 ^1 −(1/(t+1))+(t/(t^2 +1))+(1/(1+t^2 ))dt=[(1/2)log(((√(t^2 +1))/(t+1)))]_0 ^1 +[(1/2)tan^(−1) t]_0 ^1   =(π/8)−(1/4)log(2)
01tt+1.1t2+1dttanx=t=1201t(1t+1t1t2+1)dt=12011t+1+tt2+1+11+t2dt=[12log(t2+1t+1)]01+[12tan1t]01=π814log(2)
Answered by mathmax by abdo last updated on 31/Dec/20
I=∫_0 ^(π/4)  ((sinx)/(sinx +cosx))dx we do the changement tan((x/2))=t ⇒  I =∫_0 ^((√2)−1)  (((2t)/(1+t^2 ))/(((2t)/(1+t^2 )) +((1−t^2 )/(1+t^2 ))))×((2dt)/(1+t^2 )) =∫_0 ^((√2)−1)  ((4t)/((1+t^2 )(−t^2  +2t+1)))dt  =−4 ∫_0 ^((√2)−1)  ((tdt)/((t^2  +1)(t^2 −2t−1))) let decompose F(t)=(t/((t^2  +1)(t^2 −2t−1)))  t^2 −2t−1=0 →Δ^′  =1+1=2 ⇒t_1 =1+(√2) and t_2 =1−(√2)  F(t)=(a/(t−t_1 ))+(b/(t−t_2 )) +((ct +d)/(t^2  +1))  a=(t_1 /((t_1 ^2  +1)(t_1 −t_2 ))) =((1+(√2))/(2(√2)(1+3+2(√2)))) =((1+(√2))/(2(√2)(4+2(√2))))  b=(t_2 /((t_2 ^2  +1)(t_2 −t_1 ))) =((1−(√2))/((−2(√2))(3−2(√2))+1)))=(((√2)−1)/(2(√2)(4−2(√2))))  lim_(t→+∞)  tF(t)=0 =a+b +c ⇒c=−a−b  F(0)=0 =−(a/t_1 )−(b/t_2 ) +d ⇒d=(a/t_1 )+(b/t_2 ) ⇒  ∫_0 ^((√2)−1)  F(t)dt =a∫_0 ^((√2)−1) (dt/(t−t_1 ))+b ∫_0 ^((√2)−1) (dt/(t−t_2 )) +(c/2)∫_0 ^((√2)−1)  ((2t)/(t^2  +1))dt  +d ∫_0 ^((√2)−1)  (dt/(t^2  +1)) =a[ln∣t−t_1 ∣]_0 ^((√2)−1)  +b[ln∣t−t_2 ∣]_0 ^((√2)−1)  +(c/2)[ln(t^2  +1)]_0 ^((√2)−1)   +d [arctant]_0 ^((√2)−1)    rest to finish calculus...
I=0π4sinxsinx+cosxdxwedothechangementtan(x2)=tI=0212t1+t22t1+t2+1t21+t2×2dt1+t2=0214t(1+t2)(t2+2t+1)dt=4021tdt(t2+1)(t22t1)letdecomposeF(t)=t(t2+1)(t22t1)t22t1=0Δ=1+1=2t1=1+2andt2=12F(t)=att1+btt2+ct+dt2+1a=t1(t12+1)(t1t2)=1+222(1+3+22)=1+222(4+22)b=t2(t22+1)(t2t1)=12(22)(322)+1)=2122(422)limt+tF(t)=0=a+b+cc=abF(0)=0=at1bt2+dd=at1+bt2021F(t)dt=a021dttt1+b021dttt2+c20212tt2+1dt+d021dtt2+1=a[lntt1]021+b[lntt2]021+c2[ln(t2+1)]021+d[arctant]021resttofinishcalculus

Leave a Reply

Your email address will not be published. Required fields are marked *