Question Number 127528 by bramlexs22 last updated on 30/Dec/20

Answered by liberty last updated on 30/Dec/20
![Let L = ∫_0 ^( π/4) ((sin x)/(sin x+cos x)) dx and let Y = ∫_0 ^( π/4) ((cos x)/(sin x+cos x))dx (1) L+Y = ∫_0 ^( π/4) ((sin x+cos x)/(sin x+cos x)) dx = (π/4) (2) L−Y = ∫_0 ^( π/4) ((sin x−cos x)/(sin x+cos x)) dx = −∫_0 ^( π/4) ((d(sin x+cos x))/(sin x+cos x)) =−[ ln (sin x+cos x) ]_0 ^(π/4) = −(1/2)ln (2) (3) L = (((L+Y)+(L−Y))/2) = (π/8)−(1/4)ln (2)](https://www.tinkutara.com/question/Q127530.png)
Commented by bramlexs22 last updated on 30/Dec/20

Answered by Dwaipayan Shikari last updated on 30/Dec/20
![∫_0 ^1 (t/(t+1)).(1/(t^2 +1))dt tanx=t =(1/2)∫_0 ^1 t((1/(t+1))−((t−1)/(t^2 +1)))dt =(1/2)∫_0 ^1 −(1/(t+1))+(t/(t^2 +1))+(1/(1+t^2 ))dt=[(1/2)log(((√(t^2 +1))/(t+1)))]_0 ^1 +[(1/2)tan^(−1) t]_0 ^1 =(π/8)−(1/4)log(2)](https://www.tinkutara.com/question/Q127535.png)
Answered by mathmax by abdo last updated on 31/Dec/20
![I=∫_0 ^(π/4) ((sinx)/(sinx +cosx))dx we do the changement tan((x/2))=t ⇒ I =∫_0 ^((√2)−1) (((2t)/(1+t^2 ))/(((2t)/(1+t^2 )) +((1−t^2 )/(1+t^2 ))))×((2dt)/(1+t^2 )) =∫_0 ^((√2)−1) ((4t)/((1+t^2 )(−t^2 +2t+1)))dt =−4 ∫_0 ^((√2)−1) ((tdt)/((t^2 +1)(t^2 −2t−1))) let decompose F(t)=(t/((t^2 +1)(t^2 −2t−1))) t^2 −2t−1=0 →Δ^′ =1+1=2 ⇒t_1 =1+(√2) and t_2 =1−(√2) F(t)=(a/(t−t_1 ))+(b/(t−t_2 )) +((ct +d)/(t^2 +1)) a=(t_1 /((t_1 ^2 +1)(t_1 −t_2 ))) =((1+(√2))/(2(√2)(1+3+2(√2)))) =((1+(√2))/(2(√2)(4+2(√2)))) b=(t_2 /((t_2 ^2 +1)(t_2 −t_1 ))) =((1−(√2))/((−2(√2))(3−2(√2))+1)))=(((√2)−1)/(2(√2)(4−2(√2)))) lim_(t→+∞) tF(t)=0 =a+b +c ⇒c=−a−b F(0)=0 =−(a/t_1 )−(b/t_2 ) +d ⇒d=(a/t_1 )+(b/t_2 ) ⇒ ∫_0 ^((√2)−1) F(t)dt =a∫_0 ^((√2)−1) (dt/(t−t_1 ))+b ∫_0 ^((√2)−1) (dt/(t−t_2 )) +(c/2)∫_0 ^((√2)−1) ((2t)/(t^2 +1))dt +d ∫_0 ^((√2)−1) (dt/(t^2 +1)) =a[ln∣t−t_1 ∣]_0 ^((√2)−1) +b[ln∣t−t_2 ∣]_0 ^((√2)−1) +(c/2)[ln(t^2 +1)]_0 ^((√2)−1) +d [arctant]_0 ^((√2)−1) rest to finish calculus...](https://www.tinkutara.com/question/Q127585.png)