Question Number 54224 by rahul 19 last updated on 31/Jan/19

Commented by Meritguide1234 last updated on 01/Feb/19

Commented by rahul 19 last updated on 01/Feb/19
there is a little mistake in the denominator! ��
Anyways, I've understood .
Commented by maxmathsup by imad last updated on 01/Feb/19
![let I =∫_0 ^(π/4) ((sinx +cosx)/(16 +9sin(2x)))dx ⇒ I =∫_0 ^(π/4) ((sin(x+(π/4)))/(16 +9 sin(2x)))dx =_(x+(π/4)=t) ∫_(π/4) ^(π/2) ((sin(t))/(16 +9 sin(2t−(π/2))))dt =∫_(π/4) ^(π/2) ((sin(t))/(16 −9cos(2t)))dt =∫_(π/4) ^(π/2) ((sint dt)/(16−9(2cos^2 t−1))) =∫_(π/4) ^(π/2) ((sint dt)/(25−18 cos^2 t)) =_(cost=u) ∫_(1/( (√2))) ^0 ((−du)/(25−18u^2 )) = −∫_0 ^(1/( (√2))) (du/(18u^2 −25)) =−∫_0 ^(1/( (√2))) (du/((3(√2)u)^2 −25)) =_(3(√2)u =5α) −∫_0 ^(3/5) (1/(25(u^2 −1))) ((5dα)/(3(√2))) =−(1/(15(√2))) ∫_0 ^(3/5) ((1/(u−1)) −(1/(u+1)))du =(1/(30(√2)))[ln∣((u+1)/(u−1))∣]_0 ^(3/5) =(1/(30(√2))) ln∣ (((3/5)+1)/((3/5)−1))∣ =(1/(30(√2))) ln((8/2)) =((2ln(2))/(30(√2))) =((ln(2))/(15(√2)))](https://www.tinkutara.com/question/Q54309.png)
Commented by maxmathsup by imad last updated on 01/Feb/19

Answered by tanmay.chaudhury50@gmail.com last updated on 31/Jan/19
![∫_0 ^(π/4) ((d(sinx−cosx))/(16+9×2sinxcosx)) ∫_0 ^(π/4) ((d(sinx−cosx))/(25−9(1−2sinxcosx))) ∫_0 ^(π/4) ((d(sinx−cosx))/(25−9(sinx−cosx)^2 )) (1/9)∫_0 ^(π/4) ((d(sinx−cosx))/(((5/3))^2 −(sinx−cosx)^2 )) (1/9)×(1/(2((5/3))))∣ln((((5/3)+sinx−cosx)/((5/3)−sinx+cosx)))∣_0 ^(π/4) =(1/(30))[ln(1)−ln((((5/3)−1)/((5/3)+1)))] =−(1/(30))ln((1/4))=(1/(30))ln4=((ln2)/(15)) rahul pls check...pls upload answer of previous 8 inttegals you posred...](https://www.tinkutara.com/question/Q54228.png)
Commented by rahul 19 last updated on 01/Feb/19
thank you sir!
Answered by Prithwish sen last updated on 31/Jan/19

Commented by rahul 19 last updated on 01/Feb/19
thank you sir!