Menu Close

0-pi-4-sinx-cosx-16-9sin2x-dx-




Question Number 54224 by rahul 19 last updated on 31/Jan/19
∫_0 ^( (π/4)) ((sinx+cosx)/(16+9sin2x)) dx =?
0π4sinx+cosx16+9sin2xdx=?
Commented by Meritguide1234 last updated on 01/Feb/19
⇒∫_0 ^(π/4) ((sinx+cosx)/(25−9(sinx−cosx)^2 ))dx  put sinx−cosx=t rest easy
0π/4sinx+cosx259(sinxcosx)2dxputsinxcosx=tresteasy
Commented by rahul 19 last updated on 01/Feb/19
there is a little mistake in the denominator! �� Anyways, I've understood .
Commented by maxmathsup by imad last updated on 01/Feb/19
let I =∫_0 ^(π/4)   ((sinx +cosx)/(16 +9sin(2x)))dx ⇒ I =∫_0 ^(π/4)   ((sin(x+(π/4)))/(16 +9 sin(2x)))dx  =_(x+(π/4)=t)    ∫_(π/4) ^(π/2)    ((sin(t))/(16 +9 sin(2t−(π/2))))dt =∫_(π/4) ^(π/2)  ((sin(t))/(16 −9cos(2t)))dt  =∫_(π/4) ^(π/2)  ((sint dt)/(16−9(2cos^2 t−1))) =∫_(π/4) ^(π/2)   ((sint dt)/(25−18 cos^2 t)) =_(cost=u)    ∫_(1/( (√2))) ^0   ((−du)/(25−18u^2 ))  = −∫_0 ^(1/( (√2)))     (du/(18u^2 −25)) =−∫_0 ^(1/( (√2)))    (du/((3(√2)u)^2 −25)) =_(3(√2)u =5α)   −∫_0 ^(3/5)  (1/(25(u^2 −1))) ((5dα)/(3(√2)))  =−(1/(15(√2))) ∫_0 ^(3/5)   ((1/(u−1)) −(1/(u+1)))du =(1/(30(√2)))[ln∣((u+1)/(u−1))∣]_0 ^(3/5)   =(1/(30(√2))) ln∣ (((3/5)+1)/((3/5)−1))∣ =(1/(30(√2))) ln((8/2)) =((2ln(2))/(30(√2))) =((ln(2))/(15(√2)))
letI=0π4sinx+cosx16+9sin(2x)dxI=0π4sin(x+π4)16+9sin(2x)dx=x+π4=tπ4π2sin(t)16+9sin(2tπ2)dt=π4π2sin(t)169cos(2t)dt=π4π2sintdt169(2cos2t1)=π4π2sintdt2518cos2t=cost=u120du2518u2=012du18u225=012du(32u)225=32u=5α035125(u21)5dα32=1152035(1u11u+1)du=1302[lnu+1u1]035=1302ln35+1351=1302ln(82)=2ln(2)302=ln(2)152
Commented by maxmathsup by imad last updated on 01/Feb/19
error from the first line   I =∫_0 ^(π/4)   (((√2)sin(x+(π/4)))/(16+9sin(2x)))dx ⇒ I =(√2) ((ln(2))/(15(√2))) ⇒ I =((ln(2))/(15)) .
errorfromthefirstlineI=0π42sin(x+π4)16+9sin(2x)dxI=2ln(2)152I=ln(2)15.
Answered by tanmay.chaudhury50@gmail.com last updated on 31/Jan/19
∫_0 ^(π/4) ((d(sinx−cosx))/(16+9×2sinxcosx))  ∫_0 ^(π/4) ((d(sinx−cosx))/(25−9(1−2sinxcosx)))  ∫_0 ^(π/4) ((d(sinx−cosx))/(25−9(sinx−cosx)^2 ))  (1/9)∫_0 ^(π/4) ((d(sinx−cosx))/(((5/3))^2 −(sinx−cosx)^2 ))  (1/9)×(1/(2((5/3))))∣ln((((5/3)+sinx−cosx)/((5/3)−sinx+cosx)))∣_0 ^(π/4)   =(1/(30))[ln(1)−ln((((5/3)−1)/((5/3)+1)))]  =−(1/(30))ln((1/4))=(1/(30))ln4=((ln2)/(15)) rahul pls check...pls upload answer of  previous 8 inttegals you posred...
0π4d(sinxcosx)16+9×2sinxcosx0π4d(sinxcosx)259(12sinxcosx)0π4d(sinxcosx)259(sinxcosx)2190π4d(sinxcosx)(53)2(sinxcosx)219×12(53)ln(53+sinxcosx53sinx+cosx)0π4=130[ln(1)ln(53153+1)]=130ln(14)=130ln4=ln215rahulplscheckplsuploadanswerofprevious8inttegalsyouposred
Commented by rahul 19 last updated on 01/Feb/19
thank you sir!
Answered by Prithwish sen last updated on 31/Jan/19
= ∫_0 ^(π/4)   ((sin((π/4) − x) + cos((π/4) − x))/(16+9sin((π/2) − 2x)))dx  = ∫_0 ^(π/4) (((√(2 ))cosx)/(16 + 9 cos2x))dx  = (√2)∫_0 ^(π/4)  ((cosx)/(16+9−18sin^2 x))dx  = (√2) ∫_0 ^(π/4) ((cosx)/(25 −18sin^2 x))dx  putting , sinx = t  ∴ cosx dx =dt, x→(π/4) ⇒t→(1/( (√2))) , x→0 ⇒ t→0  =(√2) ∫_0 ^(1/( (√2))) (dt/(25−18t^2 ))  = ((√2)/(18)) ∫_0 ^(1/( (√2))) (dt/(((5/(3(√2))))^2 −t^2 ))  = (1/(30)) ln∣((5+3(√2) t)/(5−3(√2) t))∣_0_  ^(1/( (√2)))   = (1/(30_ )) ln4  = (1/(15_ )) ln2
=0π4sin(π4x)+cos(π4x)16+9sin(π22x)dx=0π42cosx16+9cos2xdx=20π4cosx16+918sin2xdx=20π4cosx2518sin2xdxputting,sinx=tcosxdx=dt,xπ4t12,x0t0=2012dt2518t2=218012dt(532)2t2=130ln5+32t532t012=130ln4=115ln2
Commented by rahul 19 last updated on 01/Feb/19
thank you sir!

Leave a Reply

Your email address will not be published. Required fields are marked *