Menu Close

0-pi-4-tan-n-x-dx-




Question Number 123552 by Lordose last updated on 26/Nov/20
∫_( 0) ^( (π/4)) tan^n (x)dx
0π4tann(x)dx
Answered by Adeleke last updated on 26/Nov/20
Answered by TANMAY PANACEA last updated on 26/Nov/20
I_n =∫_0 ^(π/4) tan^(n−2) x(sec^2 x−1)dx  =∫_0 ^(π/4) tan^(n−2) x×d(tanx)−I_(n−2)   =∣((tan^(n−1) x)/(n−1))∣_0 ^(π/4) −I_(n−2)   =(1/(n−1))−I_(n−2)   I_n =(1/(n−1))−I_(n−2)
In=0π4tann2x(sec2x1)dx=0π4tann2x×d(tanx)In2=∣tann1xn10π4In2=1n1In2In=1n1In2
Commented by peter frank last updated on 26/Nov/20
thank you
thankyou
Answered by Dwaipayan Shikari last updated on 26/Nov/20
If it was∫_0 ^(π/2) tan^n x dx  then we can get a closed form  ∫_0 ^(π/2) sin^n x cos^(−n) x dx  =(1/2)∫_0 ^1 t^((n/2)−(1/2)) (1−t)^(((−n)/2)−(1/2)) dt                sin^2 x=t  =(1/2) ((Γ((n/2)+(1/2))Γ((1/2)−(n/2)))/(Γ(1)))=(π/(2sin(((nπ)/2)+(π/2))))  ∫_0 ^(π/4) tan^p x dx =∫_0 ^1 (t^p /(t^2 +1))dt                  =∫_0 ^1 t^p Σ_(n=0) ^∞ (−1)^n t^(2n) =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(2n+p) dt=Σ_(n=0) ^∞ (−1)^n (1/(2n+p+1))
Ifitwas0π2tannxdxthenwecangetaclosedform0π2sinnxcosnxdx=1201tn212(1t)n212dtsin2x=t=12Γ(n2+12)Γ(12n2)Γ(1)=π2sin(nπ2+π2)0π4tanpxdx=01tpt2+1dt=01tpn=0(1)nt2n=n=0(1)n01t2n+pdt=n=0(1)n12n+p+1
Answered by mnjuly1970 last updated on 26/Nov/20
Ω=^(tan(x)=y) ∫_0 ^( 1) ((y^n dy)/(1+y^2 ))=∫_0 ^( 1)  ((y^n −y^(n+2) )/(1−y^4 ))dy    =(1/4)∫_0 ^( 1)  ((t^((n−3)/4)  −t^((n−1)/4) )/(1−t))dt   =(1/4)(H_((n−1)/4) −H_((n−3)/4) )   =(1/4)(ψ((n/4)+(3/4))−ψ((n/4)+(1/4))) ✓
Ω=tan(x)=y01yndy1+y2=01ynyn+21y4dy=1401tn34tn141tdt=14(Hn14Hn34)=14(ψ(n4+34)ψ(n4+14))
Commented by Dwaipayan Shikari last updated on 26/Nov/20
∫_0 ^(π/4) tan^4 x dx=(1/4)(ψ(1+(3/4))−ψ(1+(1/4)))                            =(1/4)(ψ((3/4))+(4/3)−ψ((1/4))−4)                           = (1/4)(πcot((π/4))−(8/3))=(π/4)−(2/3)
0π4tan4xdx=14(ψ(1+34)ψ(1+14))=14(ψ(34)+43ψ(14)4)=14(πcot(π4)83)=π423
Commented by Lordose last updated on 02/Dec/20
Exactly
Exactly

Leave a Reply

Your email address will not be published. Required fields are marked *