Menu Close

0-pi-4-tan-x-1-tan-x-dx-




Question Number 97569 by  M±th+et+s last updated on 08/Jun/20
∫_0 ^(π/4) (√(tan(x)))(√(1−tan(x))) dx
0π4tan(x)1tan(x)dx
Answered by MJS last updated on 08/Jun/20
use thus:  t=((√(1−tan x))/( (√(tan x)))) → dx=−2cos^2  x(√(tan^3  x))(√(1−tan x))dt  ⇒  2∫(t^2 /((t^2 +1)(t^4 +2t^2 +2)))dt  now decompose...
usethus:t=1tanxtanxdx=2cos2xtan3x1tanxdt2t2(t2+1)(t4+2t2+2)dtnowdecompose
Commented by MJS last updated on 08/Jun/20
t^4 +2t^2 +2=(t^2 −(√(2(√2)−2))t+(√2))(t^2 +(√(2(√2)−2))t+(√2))
t4+2t2+2=(t2222t+2)(t2+222t+2)
Commented by  M±th+et+s last updated on 10/Jun/20
thank you sir mjs  (t^2 /((t^4 +2t^2 +2)(1+t^2 )))=((t^2 +2)/(t^4 +2t^2 +2))−(1/(1+t^2 ))    simplifying  ∫_0 ^(π/4) (√(tan(x)))(√(1−tan(x)))dx=2∫((t^2 +2)/(t^4 +2t^2 +2))dt−π  with the simultanus t=((2)^(1/4) /u) and t=(2)^(1/4) u  and averaging,the integral reduced to:  ((1+(√2))/( (2)^(1/4) ))∫_0 ^∞ (((u^2 +1))/(u^4 +(2)^(1/4) u^2 +1))du  v=u−(1/u)  ∫_(−∞) ^∞ (dv/(v^2 +2+(√2)))dv−π=π((√((1+(√2))/2))−1)
thankyousirmjst2(t4+2t2+2)(1+t2)=t2+2t4+2t2+211+t2simplifying0π4tan(x)1tan(x)dx=2t2+2t4+2t2+2dtπwiththesimultanust=24uandt=24uandaveraging,theintegralreducedto:1+2240(u2+1)u4+24u2+1duv=u1udvv2+2+2dvπ=π(1+221)

Leave a Reply

Your email address will not be published. Required fields are marked *