Question Number 118111 by bemath last updated on 15/Oct/20

Answered by Lordose last updated on 15/Oct/20

Commented by bemath last updated on 15/Oct/20

Answered by Ar Brandon last updated on 15/Oct/20
![(d/dx)(xsinx+cosx)=xcosx+sinx−sinx=xcosx I=∫_0 ^(π/4) (x^2 /((xsinx+cosx)^2 ))dx=∫_0 ^(π/4) ((xcosx)/((xsinx+cosx)^2 ))∙(x/(cosx))dx ={(x/(cosx))∫((xcosx)/((xsinx+cosx)^2 ))dx}_0 ^(π/4) −∫_0 ^(π/4) {(d/dx)((x/(cosx)))∙∫((xcosx)/((xsinx+cosx)^2 ))dx} =−[(x/(cosx))∙(1/(xsinx+cosx))]_0 ^(π/4) +∫_0 ^(π/4) {(((cosx+xsinx)/(cos^2 x)))((1/(xsinx+cosx)))}dx =−[(x/(cosx))∙(1/(xsinx+cosx))]_0 ^(π/4) +∫_0 ^(π/4) (dx/(cos^2 x)) =[tanx−(x/(cosx))∙(1/(xsinx+cosx))]_0 ^(π/4) =[1−((2π)/(4(√2)))∙(8/(π(√2)+4(√2)))] =1−((16π)/(8π+32))=((8π+32−16π)/(8π+32))=((32−8π)/(32+8π))=((4−π)/(4+π))](https://www.tinkutara.com/question/Q118125.png)
Commented by bemath last updated on 15/Oct/20
