Menu Close

0-pi-4-x-ln-sin-x-dx-




Question Number 159854 by mnjuly1970 last updated on 21/Nov/21
         Ω := ∫_0 ^( (π/4)) x.ln(sin(x))dx= ?
Ω:=0π4x.ln(sin(x))dx=?
Answered by mindispower last updated on 22/Nov/21
ln(sin(x))=−ln(2)−Σ_(n≥1) ((cos(2nx))/n)  Ω=∫_0 ^(π/4) x(−ln(2)−Σ((cos(2nx))/n))dx  =−((ln(2))/(32))π^2 −Σ_(n≥1) (1/n)∫_0 ^(π/4) cos(2nx)xdx  =−((ln(2))/(32))π^2 −Σ_(n≥1) (1/n)[((sin(n(π/2)))/(2n)).(π/4)−(1/(2n))∫_0 ^(π/4) sin(2nx)dx  =−((ln(2)π^2 )/(32))+Σ_(n≥1) (−(π/8).((sin(((nπ)/2)))/n^2 )−(1/(4n^3 ))[cos(((nπ)/2))−1])  =−((ln(2)π^2 )/(32))−(π/8).Σ_(n≥0) (((−1)^n )/((2n+1)^2 ))−(1/4)Σ_(n≥1) (((−1)^n )/(8n^3 ))+((ζ(3))/4)  =((−ln(2))/(32))π^2 −(π/8)G+((ζ(3))/4)−(1/(32))((1/4)−1)ζ(3)  =−((ln(2))/(32))π^2 −(π/8)G+((35)/(128))ζ(3)
ln(sin(x))=ln(2)n1cos(2nx)nΩ=0π4x(ln(2)Σcos(2nx)n)dx=ln(2)32π2n11n0π4cos(2nx)xdx=ln(2)32π2n11n[sin(nπ2)2n.π412n0π4sin(2nx)dx=ln(2)π232+n1(π8.sin(nπ2)n214n3[cos(nπ2)1])=ln(2)π232π8.n0(1)n(2n+1)214n1(1)n8n3+ζ(3)4=ln(2)32π2π8G+ζ(3)4132(141)ζ(3)=ln(2)32π2π8G+35128ζ(3)
Commented by mnjuly1970 last updated on 23/Nov/21
thanks alot  sir Power...
thanksalotsirPower
Commented by mindispower last updated on 23/Nov/21
withe pleasur sir have a nice day
withepleasursirhaveaniceday

Leave a Reply

Your email address will not be published. Required fields are marked *