0-pi-4-x-ln-sin-x-dx- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 159854 by mnjuly1970 last updated on 21/Nov/21 Ω:=∫0π4x.ln(sin(x))dx=? Answered by mindispower last updated on 22/Nov/21 ln(sin(x))=−ln(2)−∑n⩾1cos(2nx)nΩ=∫0π4x(−ln(2)−Σcos(2nx)n)dx=−ln(2)32π2−∑n⩾11n∫0π4cos(2nx)xdx=−ln(2)32π2−∑n⩾11n[sin(nπ2)2n.π4−12n∫0π4sin(2nx)dx=−ln(2)π232+∑n⩾1(−π8.sin(nπ2)n2−14n3[cos(nπ2)−1])=−ln(2)π232−π8.∑n⩾0(−1)n(2n+1)2−14∑n⩾1(−1)n8n3+ζ(3)4=−ln(2)32π2−π8G+ζ(3)4−132(14−1)ζ(3)=−ln(2)32π2−π8G+35128ζ(3) Commented by mnjuly1970 last updated on 23/Nov/21 thanksalotsirPower… Commented by mindispower last updated on 23/Nov/21 withepleasursirhaveaniceday Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-28779Next Next post: Question-94319 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.