Menu Close

0-pi-a-e-ix-n-a-e-ix-n-cos-nx-dx-




Question Number 146669 by Ar Brandon last updated on 14/Jul/21
∫_0 ^π (a−e^(−ix) )^n (a−e^(ix) )^n cos(nx)dx
0π(aeix)n(aeix)ncos(nx)dx
Answered by mindispower last updated on 14/Jul/21
=∫_0 ^(2π) (a−e^(−ix) )(a−e^(ix) )^n cos(nx)dx  =∫_0 ^π (a−e^(−ix) )^n (a−e^(ix) )^n cos(nx)dx+  ∫_π ^(2π) (a−e^(−ix) )^n (a−e^(ix) )^n cos(nx)dx  =A+B,B,x→2π−x  B⇔∫_0 ^π (a−e^(ix) )^n (a−e^(−ix) )^n cos(nx)=A  2A=∫_0 ^(2π) (a−(1/e^(ix) ))^n (a−e^(ix) )^n .((e^(inx) −e^(−inx) )/2).  e^(ix) =z  ⇒∫_C (((az−1)^n (a−z)^n )/z^n ).((z^(2n) −1)/(2z^n )).(1/(iz))dz=2iπ Res(f,0)  =∫_C (((az−1)^n (a−z)^n )/(2iz))−(1/(2iz^(2n+1) ))(az−1)(a−z)dz  =π(−1)^n a^n −π(−1)^n a^n =0
=02π(aeix)(aeix)ncos(nx)dx=0π(aeix)n(aeix)ncos(nx)dx+π2π(aeix)n(aeix)ncos(nx)dx=A+B,B,x2πxB0π(aeix)n(aeix)ncos(nx)=A2A=02π(a1eix)n(aeix)n.einxeinx2.eix=zC(az1)n(az)nzn.z2n12zn.1izdz=2iπRes(f,0)=C(az1)n(az)n2iz12iz2n+1(az1)(az)dz=π(1)nanπ(1)nan=0
Commented by Ar Brandon last updated on 15/Jul/21
Thank you Sir
ThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *