Menu Close

0-pi-cos-3-x-7-sin-2-x-dx-




Question Number 149113 by bramlexs22 last updated on 03/Aug/21
 ∫_0 ^( π)  ((cos^3 x)/(7−sin^2 x)) dx =?
0πcos3x7sin2xdx=?
Answered by mathmax by abdo last updated on 03/Aug/21
Ψ=∫_0 ^(π )  ((cos^3 x)/(7−sin^2 x)) dx ⇒Ψ=∫_0 ^π  ((cos^3 x)/(7−(1−cos^2 x)))dx  =∫_0 ^π  ((cos^3 x)/(6+cos^2 x))dx =∫_0 ^π  ((cosx(cos^2 x+6)−6cosx)/(cos^2 x +6))dx  =∫_0 ^π  cosx dx−6∫_0 ^π  ((cosx)/(7−sin^2 x))dx  we have  ∫_0 ^π  cosx dx=[sinx]_0 ^π =0  and  ∫_0 ^π  ((cosxdx)/(7−sin^2 x))=∫_0 ^(π/2)  ((cosx)/(7−sin^2 x))dx +∫_(π/2) ^π  ((cosx)/(7−sin^2 x))(→x=(π/2)+t)  =_(sinx=y)    ∫_0 ^1  (dy/(7−y^2 )) +∫_0 ^(π/2)  ((−sint dt)/(7−cos^2 t))(→cost=y)  =∫_0 ^1  (dy/(7−y^2 ))  −∫_0 ^1  (dy/(7−y^2 )) =0 ⇒Ψ=0
Ψ=0πcos3x7sin2xdxΨ=0πcos3x7(1cos2x)dx=0πcos3x6+cos2xdx=0πcosx(cos2x+6)6cosxcos2x+6dx=0πcosxdx60πcosx7sin2xdxwehave0πcosxdx=[sinx]0π=0and0πcosxdx7sin2x=0π2cosx7sin2xdx+π2πcosx7sin2x(x=π2+t)=sinx=y01dy7y2+0π2sintdt7cos2t(cost=y)=01dy7y201dy7y2=0Ψ=0
Commented by bramlexs22 last updated on 03/Aug/21
yes. thanks
yes.thanks
Commented by ArielVyny last updated on 04/Aug/21
mr mathmax when we take t=tan(x)  what is the value of cosx and sinx
mrmathmaxwhenwetaket=tan(x)whatisthevalueofcosxandsinx

Leave a Reply

Your email address will not be published. Required fields are marked *