Menu Close

0-pi-cos-x-1-2sin-2x-dx-




Question Number 34992 by MJS last updated on 14/May/18
 ∫_0 ^π ((cos(x))/(1+2sin(2x)))dx
π0cos(x)1+2sin(2x)dx
Commented by math khazana by abdo last updated on 14/May/18
let put I = ∫_0 ^π     ((cosx)/(1+2sin(2x)))dx  I = ∫_0 ^π    ((cosx)/(1+4cosx sinx))dx  .changement tan((x/2))=t  give I = ∫_0 ^∞     (((1−t^2 )/(1+t^2 ))/(1+4 ((1−t^2 )/(1+t^2 )) ((2t)/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = 2∫_0 ^∞        ((1−t^2 )/((1+t^2 )^2 (  1+((8t(1−t^2 ))/((1+t^2 )^2 )))))dt  = 2 ∫_0 ^∞       ((1−t^2 )/((1+t^2 )^2   +8t(1−t^2 )))dt  = 2 ∫_0 ^∞      ((1−t^2 )/(t^4  +2t^2  +1 +8t −8t^3 ))dt  = 2 ∫_0 ^∞     ((1−t^2 )/(t^4  −8t^3  +2t^2  +8t +1))dt  let drcompose  F(t) = ((1−t^2 )/(t^4  −8t^3  +2t^2  +8t +1))  the roots of p(t)=t^4  −8t^3  +2t^2  +8t +1 are  t_1  ∼7,59      t_2 ∼1,3     t_3 ∼−0,76   t_4 ∼−0,13 ⇒  F(t) = ((1−t^2 )/((t −t_1 )(t −t_2 )(t −t_3 )(t −t_4 )))  = (a/(t−t_1 )) +(b/(t−t_2 )) +(c/(t−t_3 )) +(d/(t −t_4 ))  a=lim_(t→t_1 ) (t−t_1 )F(t)= ((1−t_1 ^2 )/((t_1 −t_2 )(t_1  −t_3 )(t_1  −t_4 )))  =ξ(t_1 ) (1−t_1 ^2 )  with ξ(t_1 )= (1/((t_1 −t_2 )(t_1 −t_3 )(t_1 −t_4 )))  b =ξ(t_2 )(1−t_2 ^2 ) with ξ(t_2 )= (1/((t_2 −t_1 )(t_2 −t_3 )(t_2 −t_4 )))  c =ξ(t_3 )(1−t_3 ^2 )  d=ξ(t_4 )(1−t_4 ^2 ) ⇒  I  =2 ∫_0 ^∞ F(t)dt   = 2 [ aln∣t−t_1 ∣ +b ln∣t−t_2 ∣ +c ln∣t−t_3 ) +d ln∣t−t_4 ∣]_0 ^(+∞)   =2[ ln∣(((t−t_1 )a)/((t −t_2 )^b )) ∣ + ln∣ (((t−t_3 )^c )/((t−t_4 )^d ))∣]_0 ^(+∞)   =2{−ln∣(((−t_1 )^a )/((−t_2 )^b )) ∣−ln∣(((−t_3 )^c )/((−t_4 )^d ))∣}  =2{ bln∣t_2 ∣ −aln∣t_1 ∣  +dln∣t_4 ∣ −c ln∣t_3 ∣}...  the approximate value of I isdetermined...
letputI=0πcosx1+2sin(2x)dxI=0πcosx1+4cosxsinxdx.changementtan(x2)=tgiveI=01t21+t21+41t21+t22t1+t22dt1+t2=201t2(1+t2)2(1+8t(1t2)(1+t2)2)dt=201t2(1+t2)2+8t(1t2)dt=201t2t4+2t2+1+8t8t3dt=201t2t48t3+2t2+8t+1dtletdrcomposeF(t)=1t2t48t3+2t2+8t+1therootsofp(t)=t48t3+2t2+8t+1aret17,59t21,3t30,76t40,13F(t)=1t2(tt1)(tt2)(tt3)(tt4)=att1+btt2+ctt3+dtt4a=limtt1(tt1)F(t)=1t12(t1t2)(t1t3)(t1t4)=ξ(t1)(1t12)withξ(t1)=1(t1t2)(t1t3)(t1t4)b=ξ(t2)(1t22)withξ(t2)=1(t2t1)(t2t3)(t2t4)c=ξ(t3)(1t32)d=ξ(t4)(1t42)I=20F(t)dt=2[alntt1+blntt2+clntt3)+dlntt4]0+=2[ln(tt1)a(tt2)b+ln(tt3)c(tt4)d]0+=2{ln(t1)a(t2)bln(t3)c(t4)d}=2{blnt2alnt1+dlnt4clnt3}theapproximatevalueofIisdetermined
Answered by MJS last updated on 14/May/18
∫_0 ^π ((cos(x))/(1+2sin(2x)))dx=∫_(−(π/2)) ^(π/2) ((sin(x))/(2sin(2x)−1))dx=  =∫_(−(π/2)) ^(π/2) ((sin(x))/(4sin(x)cos(x)−1))dx=             [((t=tan((x/2)) → dx=((2dt)/(t^2 +1)))),((sin(x)=((2t)/(t^2 +1)); cos(x)=−((t^2 −1)/(t^2 +1)))) ]  =−4∫_(−1) ^1 (t/(t^4 +8t^3 +2t^2 −8t+1))dt=             [((t^4 +8t^3 +2t^2 −8t+1=0)),((t_1 =−2−(√6)−(√3)−(√2))),((t_2 =−2−(√6)+(√3)+(√2))),((t_3 =−2+(√6)−(√3)+(√2))),((t_4 =−2+(√6)+(√3)−(√2))) ]  =−4∫_(−1) ^1 ((A/(t−t_1 ))+(B/(t−t_2 ))+(C/(t−t_3 ))+(D/(t−t_4 )))dt=  =−4[Aln∣t−t_1 ∣+Bln∣t−t_2 ∣+Cln∣t−t_3 ∣+Dln∣t−t_4 ∣]_(−1) ^1 =  =−4[Aln∣tan((x/2))−t_1 ∣+Bln∣tan((x/2))−t_2 ∣+Cln∣tan((x/2))−t_3 ∣+Dln∣tan((x/2))−t_4 ∣]_(−(π/2)) ^(π/2) =             [((A=(t_1 /((t_1 −t_2 )(t_1 −t_3 )(t_1 −t_4 )))=((−(√6)+3(√2))/(96)))),((B=(t_2 /((t_2 −t_1 )(t_2 −t_3 )(t_2 −t_4 )))=((−(√6)−3(√2))/(96)))),((C=(t_3 /((t_3 −t_1 )(t_3 −t_2 )(t_3 −t_4 )))=(((√6)−3(√2))/(96)))),((D=(t_4 /((t_4 −t_1 )(t_4 −t_2 )(t_4 −t_3 )))=(((√6)+3(√2))/(96)))) ]  =−(1/(24))[(−(√6)+3(√2))ln∣tan((x/2))+2+(√6)+(√3)+(√2)∣+(−(√6)−3(√2))ln∣tan((x/2))+2+(√6)−(√3)−(√2)∣+((√6)−3(√2))ln∣tan((x/2))+2−(√6)+(√3)−(√2)∣+((√6)+3(√2))ln∣tan((x/2))+2−(√6)−(√3)+(√2)∣]_(−(π/2)) ^(π/2) ≈  ≈1.091166
π0cos(x)1+2sin(2x)dx=π2π2sin(x)2sin(2x)1dx==π2π2sin(x)4sin(x)cos(x)1dx=[t=tan(x2)dx=2dtt2+1sin(x)=2tt2+1;cos(x)=t21t2+1]=411tt4+8t3+2t28t+1dt=[t4+8t3+2t28t+1=0t1=2632t2=26+3+2t3=2+63+2t4=2+6+32]=411(Att1+Btt2+Ctt3+Dtt4)dt==4[Alntt1+Blntt2+Clntt3+Dlntt4]11=Missing \left or extra \right[A=t1(t1t2)(t1t3)(t1t4)=6+3296B=t2(t2t1)(t2t3)(t2t4)=63296C=t3(t3t1)(t3t2)(t3t4)=63296D=t4(t4t1)(t4t2)(t4t3)=6+3296]Missing \left or extra \right1.091166
Commented by MJS last updated on 14/May/18
I couldn′t get this out of my head...  this should be the solution, please check for  mistakes of method.  I can guarantee the correctness of the zeros  t_1 , t_2 , t_3 , t_4  and the coefficients A, B, C, D.
Icouldntgetthisoutofmyheadthisshouldbethesolution,pleasecheckformistakesofmethod.Icanguaranteethecorrectnessofthezerost1,t2,t3,t4andthecoefficientsA,B,C,D.
Commented by ajfour last updated on 14/May/18
for x=(π/(12)) ,  ((sin x)/(2sin 2x−1)) is not defined .
forx=π12,sinx2sin2x1isnotdefined.
Commented by MJS last updated on 14/May/18
but it′s the Cauchy principal value:  ∫(p/(x−q))dx=pln∣x−q∣  a<q<b; h>0  ∫_a ^b (p/(x−q))dx=lim_(h→0) (∫_a ^(q−h) (p/(x−q))dx+∫_(q+h) ^b (p/(x−q))dx)=  =lim_(h→0) ([pln∣x−q∣]_a ^(q−h) +[pln∣x−q∣]_(q+h) ^b )=  =lim_(h→0) (pln∣h∣−pln∣a−q∣+pln∣b−q∣−pln∣h∣)=  =lim_(h→0) (pln∣b−q∣−pln∣a−q∣)=  =pln∣b−q∣−pln∣a−q∣=∫_a ^b (p/(x−q))dx  q.e.d.
butitstheCauchyprincipalvalue:pxqdx=plnxqa<q<b;h>0bapxqdx=limh0(qhapxqdx+bq+hpxqdx)==limh0([plnxq]aqh+[plnxq]q+hb)==limh0(plnhplnaq+plnbqplnh)==limh0(plnbqplnaq)==plnbqplnaq∣=bapxqdxq.e.d.
Commented by ajfour last updated on 14/May/18
not as sure, you know better.
notassure,youknowbetter.

Leave a Reply

Your email address will not be published. Required fields are marked *