Question Number 34992 by MJS last updated on 14/May/18

Commented by math khazana by abdo last updated on 14/May/18
![let put I = ∫_0 ^π ((cosx)/(1+2sin(2x)))dx I = ∫_0 ^π ((cosx)/(1+4cosx sinx))dx .changement tan((x/2))=t give I = ∫_0 ^∞ (((1−t^2 )/(1+t^2 ))/(1+4 ((1−t^2 )/(1+t^2 )) ((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = 2∫_0 ^∞ ((1−t^2 )/((1+t^2 )^2 ( 1+((8t(1−t^2 ))/((1+t^2 )^2 )))))dt = 2 ∫_0 ^∞ ((1−t^2 )/((1+t^2 )^2 +8t(1−t^2 )))dt = 2 ∫_0 ^∞ ((1−t^2 )/(t^4 +2t^2 +1 +8t −8t^3 ))dt = 2 ∫_0 ^∞ ((1−t^2 )/(t^4 −8t^3 +2t^2 +8t +1))dt let drcompose F(t) = ((1−t^2 )/(t^4 −8t^3 +2t^2 +8t +1)) the roots of p(t)=t^4 −8t^3 +2t^2 +8t +1 are t_1 ∼7,59 t_2 ∼1,3 t_3 ∼−0,76 t_4 ∼−0,13 ⇒ F(t) = ((1−t^2 )/((t −t_1 )(t −t_2 )(t −t_3 )(t −t_4 ))) = (a/(t−t_1 )) +(b/(t−t_2 )) +(c/(t−t_3 )) +(d/(t −t_4 )) a=lim_(t→t_1 ) (t−t_1 )F(t)= ((1−t_1 ^2 )/((t_1 −t_2 )(t_1 −t_3 )(t_1 −t_4 ))) =ξ(t_1 ) (1−t_1 ^2 ) with ξ(t_1 )= (1/((t_1 −t_2 )(t_1 −t_3 )(t_1 −t_4 ))) b =ξ(t_2 )(1−t_2 ^2 ) with ξ(t_2 )= (1/((t_2 −t_1 )(t_2 −t_3 )(t_2 −t_4 ))) c =ξ(t_3 )(1−t_3 ^2 ) d=ξ(t_4 )(1−t_4 ^2 ) ⇒ I =2 ∫_0 ^∞ F(t)dt = 2 [ aln∣t−t_1 ∣ +b ln∣t−t_2 ∣ +c ln∣t−t_3 ) +d ln∣t−t_4 ∣]_0 ^(+∞) =2[ ln∣(((t−t_1 )a)/((t −t_2 )^b )) ∣ + ln∣ (((t−t_3 )^c )/((t−t_4 )^d ))∣]_0 ^(+∞) =2{−ln∣(((−t_1 )^a )/((−t_2 )^b )) ∣−ln∣(((−t_3 )^c )/((−t_4 )^d ))∣} =2{ bln∣t_2 ∣ −aln∣t_1 ∣ +dln∣t_4 ∣ −c ln∣t_3 ∣}... the approximate value of I isdetermined...](https://www.tinkutara.com/question/Q35031.png)
Answered by MJS last updated on 14/May/18
![∫_0 ^π ((cos(x))/(1+2sin(2x)))dx=∫_(−(π/2)) ^(π/2) ((sin(x))/(2sin(2x)−1))dx= =∫_(−(π/2)) ^(π/2) ((sin(x))/(4sin(x)cos(x)−1))dx= [((t=tan((x/2)) → dx=((2dt)/(t^2 +1)))),((sin(x)=((2t)/(t^2 +1)); cos(x)=−((t^2 −1)/(t^2 +1)))) ] =−4∫_(−1) ^1 (t/(t^4 +8t^3 +2t^2 −8t+1))dt= [((t^4 +8t^3 +2t^2 −8t+1=0)),((t_1 =−2−(√6)−(√3)−(√2))),((t_2 =−2−(√6)+(√3)+(√2))),((t_3 =−2+(√6)−(√3)+(√2))),((t_4 =−2+(√6)+(√3)−(√2))) ] =−4∫_(−1) ^1 ((A/(t−t_1 ))+(B/(t−t_2 ))+(C/(t−t_3 ))+(D/(t−t_4 )))dt= =−4[Aln∣t−t_1 ∣+Bln∣t−t_2 ∣+Cln∣t−t_3 ∣+Dln∣t−t_4 ∣]_(−1) ^1 = =−4[Aln∣tan((x/2))−t_1 ∣+Bln∣tan((x/2))−t_2 ∣+Cln∣tan((x/2))−t_3 ∣+Dln∣tan((x/2))−t_4 ∣]_(−(π/2)) ^(π/2) = [((A=(t_1 /((t_1 −t_2 )(t_1 −t_3 )(t_1 −t_4 )))=((−(√6)+3(√2))/(96)))),((B=(t_2 /((t_2 −t_1 )(t_2 −t_3 )(t_2 −t_4 )))=((−(√6)−3(√2))/(96)))),((C=(t_3 /((t_3 −t_1 )(t_3 −t_2 )(t_3 −t_4 )))=(((√6)−3(√2))/(96)))),((D=(t_4 /((t_4 −t_1 )(t_4 −t_2 )(t_4 −t_3 )))=(((√6)+3(√2))/(96)))) ] =−(1/(24))[(−(√6)+3(√2))ln∣tan((x/2))+2+(√6)+(√3)+(√2)∣+(−(√6)−3(√2))ln∣tan((x/2))+2+(√6)−(√3)−(√2)∣+((√6)−3(√2))ln∣tan((x/2))+2−(√6)+(√3)−(√2)∣+((√6)+3(√2))ln∣tan((x/2))+2−(√6)−(√3)+(√2)∣]_(−(π/2)) ^(π/2) ≈ ≈1.091166](https://www.tinkutara.com/question/Q34995.png)
Commented by MJS last updated on 14/May/18

Commented by ajfour last updated on 14/May/18

Commented by MJS last updated on 14/May/18
![but it′s the Cauchy principal value: ∫(p/(x−q))dx=pln∣x−q∣ a<q<b; h>0 ∫_a ^b (p/(x−q))dx=lim_(h→0) (∫_a ^(q−h) (p/(x−q))dx+∫_(q+h) ^b (p/(x−q))dx)= =lim_(h→0) ([pln∣x−q∣]_a ^(q−h) +[pln∣x−q∣]_(q+h) ^b )= =lim_(h→0) (pln∣h∣−pln∣a−q∣+pln∣b−q∣−pln∣h∣)= =lim_(h→0) (pln∣b−q∣−pln∣a−q∣)= =pln∣b−q∣−pln∣a−q∣=∫_a ^b (p/(x−q))dx q.e.d.](https://www.tinkutara.com/question/Q35020.png)
Commented by ajfour last updated on 14/May/18
