Menu Close

0-pi-cosx-2-sin-2-x-dx-




Question Number 107002 by Ar Brandon last updated on 08/Aug/20
∫_0 ^π ((cosx)/( (√(2−sin^2 x))))dx
0πcosx2sin2xdx
Answered by bemath last updated on 08/Aug/20
∫_0 ^π  ((d(sin x))/( (√(2−sin^2 x)))) = ∫_( (√2)) ^(√2)  (du/( (√(2−u^2 )))) = 0
π0d(sinx)2sin2x=22du2u2=0
Answered by mathmax by abdo last updated on 08/Aug/20
I =∫_0 ^π  ((cosx)/( (√(2−sin^2 x))))dx  we have  by changement sinx =t  ∫ ((cosx dx)/( (√(2−sin^2 x))))dx =∫ (dt/( (√(2−t^2 )))) =(1/( (√2)))∫ (dt/( (√(1−((t/( (√2))))^2 ))))  =_((t/( (√2)))=u)    (1/( (√2)))∫  (((√2)du)/( (√(1−u^2 )))) =arcsin((t/( (√2))))+c ⇒I=[arcsin(((sinx)/( (√2))))]_0 ^π   =0
I=0πcosx2sin2xdxwehavebychangementsinx=tcosxdx2sin2xdx=dt2t2=12dt1(t2)2=t2=u122du1u2=arcsin(t2)+cI=[arcsin(sinx2)]0π=0
Answered by Ar Brandon last updated on 08/Aug/20
I=∫_0 ^(π/2) ((cosx)/( (√(2−sin^2 x))))dx−∫_0 ^(π/2) ((cosx)/( (√(2−sin^2 x))))dx=0
I=0π2cosx2sin2xdx0π2cosx2sin2xdx=0

Leave a Reply

Your email address will not be published. Required fields are marked *