Menu Close

0-pi-cosx-2-sin-2-x-dx-




Question Number 107051 by Ar Brandon last updated on 08/Aug/20
∫_0 ^π ((cosx)/(2+sin^2 x))dx
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cosx}}{\mathrm{2}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 08/Aug/20
∫_0 ^π (dt/(2+t^2 ))  (sinx=t)  (1/( (√2)))tan^(−1) ((t/( (√2))))+C=[(1/( (√2)))tan^(−1) (((sinx)/( (√2))))]_0 ^π =0
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{dt}}{\mathrm{2}+\mathrm{t}^{\mathrm{2}} }\:\:\left(\mathrm{sinx}=\mathrm{t}\right) \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{t}}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{C}=\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sinx}}{\:\sqrt{\mathrm{2}}}\right)\right]_{\mathrm{0}} ^{\pi} =\mathrm{0} \\ $$
Commented by Ar Brandon last updated on 08/Aug/20
OK, I got it now��
Commented by Dwaipayan Shikari last updated on 08/Aug/20
��
Answered by Ar Brandon last updated on 08/Aug/20
I=∫_0 ^(π/2) ((cosx)/(2+sin^2 x))dx−∫_0 ^(π/2) ((cosx)/(2+sin^2 x))dx=0
$$\mathcal{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cosx}}{\mathrm{2}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cosx}}{\mathrm{2}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *