Menu Close

0-pi-d-a-cos-2-a-gt-1-




Question Number 65100 by arcana last updated on 25/Jul/19
∫_0 ^π (dθ/((a+cosθ)^2 )), a>1
0πdθ(a+cosθ)2,a>1
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
let  g(a)=∫_0 ^π (dθ/(a+cosθ ))   then  ∫_0 ^π (dθ/((a+cosθ)^2 ))=−(dg/(da  ))      so let find g(a)  g(a)=∫_0 ^π (dθ/((a−1)+2cos^2 ((θ/2))))=∫_0 ^(π/2) ((2dx)/((a−1)[cos^2 x+sin^2 x]+2cos^2 x))=2∫_0 ^(π/2) (dx/((a+1)cos^2 x +(a−1)sin^2 x))  then  ((g(a))/2)= ∫_0 ^(π/2)  (((1/(cos^2 x)) dx)/((a+1)+(a−1)tan^2 x))   we have a>1⇒(a+1)+(a−1)tan^2 x=(a+1)[1+((√((a−1)/(a+1)))tanx)^2 ]  ((g(a))/2)=(1/( (√(a^2 −1))))∫_0 ^(π/2)    (((√((a−1)/(a+1))) (1+tan^2 x) dx)/(1+((√(((a−1)/(a+1)) )) tanx)^2 ))          So   we get  g(a)=(2/( (√(a^2 −1)))) [arctan((√(((a−1)/(a+1))  )) tanx)]_0 ^(π/2) = (π/( (√(a^2 −1))))   then  (dg/da)=π.((((−2a)/(2(√(a^2 −1))))/(a^2 −1)))= ((−πa)/((a^2 −1)^(3/2) ))    that leads us to  ∫_(0 ) ^π  (dθ/((a+cosθ)^2 )) = ((πa)/((a^2 −1)^(3/2) ))
letg(a)=0πdθa+cosθthen0πdθ(a+cosθ)2=dgdasoletfindg(a)g(a)=0πdθ(a1)+2cos2(θ2)=0π22dx(a1)[cos2x+sin2x]+2cos2x=20π2dx(a+1)cos2x+(a1)sin2xtheng(a)2=0π21cos2xdx(a+1)+(a1)tan2xwehavea>1(a+1)+(a1)tan2x=(a+1)[1+(a1a+1tanx)2]g(a)2=1a210π2a1a+1(1+tan2x)dx1+(a1a+1tanx)2Sowegetg(a)=2a21[arctan(a1a+1tanx)]0π2=πa21thendgda=π.(2a2a21a21)=πa(a21)32thatleadsusto0πdθ(a+cosθ)2=πa(a21)32
Commented by turbo msup by abdo last updated on 25/Jul/19
let ϕ(a) =∫_0 ^π (dθ/(a+cosθ)) we have  ϕ^′ (a)=−∫_0 ^π   (dθ/((a+cosθ)^2 )) ⇒  ∫_0 ^π   (dθ/((a+cosθ)^2 )) =−ϕ^′ (a)  ϕ(a) =_(tan((θ/2))=x)   ∫_0 ^∞   (1/(a+((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 ))  =∫_0 ^∞    ((2dx)/(a+ax^2  +1−x^2 )) =∫_0 ^∞   ((2dx)/((a−1)x^2 +a+1))  =(2/(a−1)) ∫_0 ^∞    (dx/(x^2  +((a+1)/(a−1))))  =_(x =(√((a+1)/(a−1)))u)  (2/(a−1)) ∫_0 ^∞   (1/(((a+1)/(a−1))(1+u^2 )))(√((a+1)/(a−1)))du  =(2/(a+1)) ((√(a+1))/( (√(a−1)))) ∫_0 ^∞  (du/(1+u^2 ))  =(2/( (√(a^2 −1)))) (π/2) =(π/( (√(a^2 −1)))) ⇒  ϕ^′ (a) =π{(a^2 −1)^(−(1/2)) }^′   =π(−(1/2))(2a)(a^2 −1)^(−(3/2))   =((−πa)/((a^2 −1)(√(a^2 −1)))) ⇒  ∫_0 ^π   (dθ/((a+cosθ)^2 )) =((πa)/((a^2 −1)(√(a^2 −1))))  if a>1
letφ(a)=π0dθa+cosθwehaveφ(a)=0πdθ(a+cosθ)20πdθ(a+cosθ)2=φ(a)φ(a)=tan(θ2)=x01a+1x21+x22dx1+x2=02dxa+ax2+1x2=02dx(a1)x2+a+1=2a10dxx2+a+1a1=x=a+1a1u2a101a+1a1(1+u2)a+1a1du=2a+1a+1a10du1+u2=2a21π2=πa21φ(a)=π{(a21)12}=π(12)(2a)(a21)32=πa(a21)a210πdθ(a+cosθ)2=πa(a21)a21ifa>1
Commented by arcana last updated on 25/Jul/19
Gracias
Gracias
Commented by arcana last updated on 25/Jul/19
Gracias
Gracias
Commented by turbo msup by abdo last updated on 25/Jul/19
where are you from arcana...
whereareyoufromarcana
Commented by arcana last updated on 25/Jul/19
Colombia but i can understand coments.  Muchas gracias
Colombiabuticanunderstandcoments.Muchasgracias
Commented by mathmax by abdo last updated on 25/Jul/19
you are most welcome in that platform...
youaremostwelcomeinthatplatform
Commented by arcana last updated on 26/Jul/19
de nuevo gracias
denuevogracias

Leave a Reply

Your email address will not be published. Required fields are marked *