Menu Close

0-pi-dt-1-sina-cost-a-0-pi-2-




Question Number 165741 by metamorfose last updated on 07/Feb/22
∫_0 ^π (dt/(1−sina.cost))=??? , a∈]0,(π/2)[
0πdt1sina.cost=???,a]0,π2[
Answered by MJS_new last updated on 08/Feb/22
a∈]0; (π/2)[ ⇒ 0<sin a <1 ⇒ let sin a =A; 0<A<1  ∫(dt/(1−Acos t))=       [u=tan (t/2) ⇒ dt=((2du)/(u^2 +1))]  =2∫(du/((1+A)u^2 +(1−A)))=       [let B=1+A ∧ C=1−A ⇒ B, C >0]  =2∫(du/(Bu^2 +C))=       [u=((√C)/( (√B)))v → du=((√C)/( (√B)))dv]  =(2/( (√(BC))))∫(dv/(v^2 +1))=(2/( (√(BC))))arctan v =  =(2/( (√(1−A^2 ))))arctan (((√(1+A)) u)/( (√(1−A)))) =  =(2/(cos a))arctan (((√(1+sin a)) tan (t/2))/( (√(1−sin a)))) +C  ⇒  answer is lim_(t→π^− )  ((2/(cos a))arctan (((√(1+sin a)) tan (t/2))/( (√(1−sin a))))) =(π/(cos a))
a]0;π2[0<sina<1letsina=A;0<A<1dt1Acost=[u=tant2dt=2duu2+1]=2du(1+A)u2+(1A)=[letB=1+AC=1AB,C>0]=2duBu2+C=[u=CBvdu=CBdv]=2BCdvv2+1=2BCarctanv==21A2arctan1+Au1A==2cosaarctan1+sinatant21sina+Canswerislimtπ(2cosaarctan1+sinatant21sina)=πcosa
Commented by metamorfose last updated on 09/Feb/22
thnx sir
thnxsir
Answered by Mathspace last updated on 08/Feb/22
let sina =α ⇒  I=∫_0 ^π  (dt/(1−αcost))  =_(tan((t/2))=y)    ∫_0 ^∞   ((2dy)/((1+y^2 )(1−α((1−y^2 )/(1+y^2 )))))  =2∫_0 ^∞   (dy/(1+y^2 −α +αy^2 ))  =2∫_0 ^∞ (dy/(1−α +(1+α)y^2 ))  =(2/(1−α))∫_0 ^∞  (dy/(1+((1+α)/(1−α))y^2 ))  =_(z=(√((1+α)/(1−α)))y)   (2/(1−α))∫_0 ^∞   (dz/( (√((1+α)/(1−α)))(1+z^2 )))  =(2/(1−α))((√(1−α))/( (√(1+α))))×(π/2)  =(π/( (√(1−α^2 ))))=(π/( (√(1−sin^2 α))))=(π/(∣cosα∣))  or 0<α<(π/2) ⇒I=(π/(cosα))
letsina=αI=0πdt1αcost=tan(t2)=y02dy(1+y2)(1α1y21+y2)=20dy1+y2α+αy2=20dy1α+(1+α)y2=21α0dy1+1+α1αy2=z=1+α1αy21α0dz1+α1α(1+z2)=21α1α1+α×π2=π1α2=π1sin2α=πcosαor0<α<π2I=πcosα
Commented by metamorfose last updated on 09/Feb/22
thnx sir
thnxsir
Commented by Mathspace last updated on 08/Feb/22
I=(π/(cosa))
I=πcosa

Leave a Reply

Your email address will not be published. Required fields are marked *