Menu Close

0-pi-dx-5-cos-x-3-




Question Number 105706 by bramlex last updated on 31/Jul/20
∫_0 ^π  (dx/(((√5)−cos x)^3 )) ?
π0dx(5cosx)3?
Answered by john santu last updated on 31/Jul/20
F(a) = ∫_0 ^π  (dx/(a−cos x)) = (π/( (√(a^2 −1))))  F ′(a) = ∫ (∂/∂a)[(dx/(a−cos x)) ] = (∂/∂a) [(π/( (√(a^2 −1))))]  −∫_0 ^π  ((dx/((a−cos x)^2 )))=−πa^2 (a^2 −1)^(−3/2)   F ′′(a)= ∫_0 ^π  (∂/∂a)[(dx/((a−cos x)^2 ))]=−π[(a^2 −1)^(−3/2) −3a^2 (a^2 −1)^(−5/2) ]  ∫_0 ^π  (dx/((1−cos x)^3 )) = −(π/2)(a^2 −1)^(−5/2) ((a^2 −1)−3a^2 )                                = (π/2). ((2a^2 +1)/((a^2 −1)^(5/2) ))  put a = (√5)  ∫_0 ^π  (dx/(((√5)−cos x)^3 )) = ((11π)/(64)) . ★
F(a)=π0dxacosx=πa21F(a)=a[dxacosx]=a[πa21]π0(dx(acosx)2)=πa2(a21)3/2F(a)=π0a[dx(acosx)2]=π[(a21)3/23a2(a21)5/2]π0dx(1cosx)3=π2(a21)5/2((a21)3a2)=π2.2a2+1(a21)5/2puta=5π0dx(5cosx)3=11π64.

Leave a Reply

Your email address will not be published. Required fields are marked *