Menu Close

0-pi-e-1-i-x-dx-




Question Number 51215 by gunawan last updated on 25/Dec/18
∫_0 ^π e^((1+i)x) dx=...
0πe(1+i)xdx=
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18
a=1+i  ∫_0 ^π e^(ax) dx  =(1/a)∣e^(ax) ∣_0 ^π   =(1/a)(e^(aπ) −1)  =(1/(1+i))(e^((1+i)π) −1)  =((1−i)/2)[e^π e^(iπ) −1]         [e^(iπ) =cosπ+isinπ=−1]  =((1−i)/2)(−e^π −1)  =((−1+i)/2)(e^π +1)
a=1+i0πeaxdx=1aeax0π=1a(eaπ1)=11+i(e(1+i)π1)=1i2[eπeiπ1][eiπ=cosπ+isinπ=1]=1i2(eπ1)=1+i2(eπ+1)

Leave a Reply

Your email address will not be published. Required fields are marked *