Menu Close

0-pi-e-cos-x-e-cos-x-e-cos-x-dx-




Question Number 151345 by peter frank last updated on 20/Aug/21
∫_0 ^π (e^(cos x) /(e^(cos x) +e^(−cos x) ))dx
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} }{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} +\mathrm{e}^{−\mathrm{cos}\:\mathrm{x}} }\mathrm{dx} \\ $$
Answered by Olaf_Thorendsen last updated on 20/Aug/21
I = ∫_0 ^π (e^(cosx) /(e^(cosx) +e^(−cosx) )) dx   (1)  Let u = π−x :  I = ∫_0 ^π (e^(−cosu) /(e^(−cosu) +e^(cosu) )) du   (2)  (((1)+(2))/2) : I = (π/2)
$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\pi} \frac{{e}^{\mathrm{cos}{x}} }{{e}^{\mathrm{cos}{x}} +{e}^{−\mathrm{cos}{x}} }\:{dx}\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{u}\:=\:\pi−{x}\:: \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\pi} \frac{{e}^{−\mathrm{cos}{u}} }{{e}^{−\mathrm{cos}{u}} +{e}^{\mathrm{cos}{u}} }\:{du}\:\:\:\left(\mathrm{2}\right) \\ $$$$\frac{\left(\mathrm{1}\right)+\left(\mathrm{2}\right)}{\mathrm{2}}\::\:\mathrm{I}\:=\:\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *