Menu Close

0-pi-sec-2-x-1-tan-2-x-dx-




Question Number 106964 by Ar Brandon last updated on 08/Aug/20
∫_0 ^π ((sec^2 x)/( (√(1−tan^2 x))))dx
0πsec2x1tan2xdx
Commented by Her_Majesty last updated on 08/Aug/20
I believe this integral is divergent  must sleep now to keep my majestic beauty  will try to show later
Ibelievethisintegralisdivergentmustsleepnowtokeepmymajesticbeautywilltrytoshowlater
Commented by Dwaipayan Shikari last updated on 08/Aug/20
probably
probably
Commented by Dwaipayan Shikari last updated on 08/Aug/20
Commented by Ar Brandon last updated on 08/Aug/20
��Alright her majesty ��
Answered by bemath last updated on 08/Aug/20
   ^(@bemath@)   let u = tan x → { ((du=sec^2 x dx)),((→ { ((x=0→u=0)),((x=π→u=0)) :})) :}  I=∫_0 ^0  (du/( (√(1−u^2 )))) = 0
@bemath@letu=tanx{du=sec2xdx{x=0u=0x=πu=0I=00du1u2=0
Answered by 1549442205PVT last updated on 08/Aug/20
I=∫_0 ^( π) ((d(tanx))/( (√(1−tan^2 x))))= _(tanx=u) ∫_0 ^( 1) (du/( (√(1−u^2 ))))=sin^(−1) u∣_0 ^0   =0−0=0
I=0πd(tanx)1tan2x=tanx=u01du1u2=sin1u00=00=0
Answered by Dwaipayan Shikari last updated on 08/Aug/20
∫_0 ^π (dt/( (√(1−t^2 ))))          tanx=t     ,sec^2 x=(dt/dx)  [sin^(−1) (tanx)]_0 ^π =0
0πdt1t2tanx=t,sec2x=dtdx[sin1(tanx)]0π=0
Commented by Ar Brandon last updated on 08/Aug/20
Thank y′all. I really needed to verify something.  And you′ve been of great help.
Thankyall.Ireallyneededtoverifysomething.Andyouvebeenofgreathelp.
Answered by Ar Brandon last updated on 08/Aug/20
I=∫_0 ^(π/2) ((sec^2 x)/( (√(1−tan^2 x))))dx+∫_(π/2) ^π ((sec^2 x)/( (√(1−tan^2 x))))dx     =∫_0 ^(π/2) ((sec^2 x)/( (√(1−tan^2 x))))dx−∫_0 ^(π/2) ((sec^2 x)/( (√(1−tan^2 x))))dx=0
I=0π2sec2x1tan2xdx+π2πsec2x1tan2xdx=0π2sec2x1tan2xdx0π2sec2x1tan2xdx=0
Answered by Her_Majesty last updated on 08/Aug/20
y=((sec^2 x)/( (√(1−tan^2 x))))=(1/(∣cosx∣(√(cos2x))))  for 0≤x≤π  y is defined for 0≤x<(π/4) and  ((3π)/4)<y≤π  ⇒ the integral only exists if the  imaginary/complex parts cancel out  but let′s try  ∫_0 ^π (dx/(∣cosx∣(√(cos2x))))=2∫_0 ^(π/2) (dx/(cosx(√(cos2x))))  with t=tanx we get  ∫_0 ^(π/2) (dx/(cosx(√(cos2x))))=∫_0 ^(+∞) (dt/( (√(1−t^2 ))))=[arcsin(t)]_0 ^(+∞) =  =lim_(t→+∞) arcsin(t) which is (π/2)−i∞ (try some  values like t=10^(10) , 10^(20) ...  ⇒ the integral is divergent
y=sec2x1tan2x=1cosxcos2xfor0xπyisdefinedfor0x<π4and3π4<yπtheintegralonlyexistsiftheimaginary/complexpartscanceloutbutletstryπ0dxcosxcos2x=2π/20dxcosxcos2xwitht=tanxwegetπ/20dxcosxcos2x=+0dt1t2=[arcsin(t)]0+==limarcsint+(t)whichisπ2i(trysomevaluesliket=1010,1020theintegralisdivergent
Commented by Ar Brandon last updated on 08/Aug/20
OK Sir, thanks

Leave a Reply

Your email address will not be published. Required fields are marked *