0-pi-sin-2-x-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123896 by john_santu last updated on 29/Nov/20 ∫π0sin2xxdx Answered by mindispower last updated on 29/Nov/20 sin2(x)=1−cos(2x)2⇔∫0π1−cos(2x)2xdx=∫0π12x−∫0πcos(2x)2xdx=A−Bx=πt24=[x]0π−∫02cos(π2t2)πt.π2tdt=π−∫02cos(πt22)2πdt=π−π2∫02cos(πt22)dtRecall∫0ucos(πt22)dt=C(u)Ferneslintegralweget∫0πsin2(t)2tdt=π−π2C(2)=π2(2−C(2)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-189429Next Next post: sin-x-sin-3x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.