Menu Close

0-pi-sin-21x-2-sin-x-2-dx-




Question Number 85677 by john santu last updated on 24/Mar/20
∫_0 ^π  ((sin (((21x)/2)))/(sin ((x/2)))) dx
π0sin(21x2)sin(x2)dx
Commented by jagoll last updated on 24/Mar/20
i don′t have a simple way to solve  it
idonthaveasimplewaytosolveit
Commented by john santu last updated on 24/Mar/20
using Reduction formula
usingReductionformula
Commented by M±th+et£s last updated on 25/Mar/20
∫_0 ^π ((sin(((21x)/2)))/(sin((x/2))))dx  let y=(x/2)  ∫_0 ^(π/2) (((sin21y))/(sin(y))) 2dy  2∫_0 ^(π/2) ((sin20y cos(y) + cos20y siny)/(siny))dy  2∫_0 ^(π/2) sin20y  coty dy +∫_0 ^(π/2) cos20y dy  ∫_0 ^(π/2) cosy dy=0  2∫_0 ^(π/2) sin20y coty dy=2∫_0 ^(π/2) (1+2cos2y+2cos4y+...+cos20y)dy    [y+sin2y+(1/2)sin4y+(1/3)sin6y+...]_0 ^(π/2)   π+0+....  so    ∫_0 ^π ((sin(((21x)/2)))/(sin((x/2))))dx=π
0πsin(21x2)sin(x2)dxlety=x20π2(sin21y)sin(y)2dy20π2sin20ycos(y)+cos20ysinysinydy20π2sin20ycotydy+0π2cos20ydy0π2cosydy=020π2sin20ycotydy=20π2(1+2cos2y+2cos4y++cos20y)dy[y+sin2y+12sin4y+13sin6y+]0π2π+0+.so0πsin(21x2)sin(x2)dx=π
Answered by mind is power last updated on 24/Mar/20
Σ_(k=0) ^(20) e^(ikx) =((e^(i10x)  sin(((21x)/2)))/(sin((x/2))))  ⇒∫_0 ^π ((sin(((21x)/2)))/(sin((x/2))))dx=Σ_(k.0) ^(20) ∫_0 ^π e^(i(k−10)x) dx easy now  =π+Σ_(k=0) ^9 ∫_0 ^π (e^(i(k−10)x) )dx+Σ_(k=0) ^9 ∫_0 ^π (e^(i(1+k)x) )dx  =π+Σ_(k=0) ^9 {(1/(i(k−10)))[e^(i(k−10)π) −1]+((e^(i(1+k)π) −1)/(i(1+k)))}  =π+Σ_(k=0) ^9 (((−1)^k −1)/(i(k−10)))+Σ_(k=0) ^9 (((−1)^k −1)/(i(1+k)))  =π−Σ_(k=0) ^9 (((−1)^k −1)/(i(1+k)))+Σ_(k=0) ^9 (((−1)^k −1)/(i(1+k)))=π
20k=0eikx=ei10xsin(21x2)sin(x2)0πsin(21x2)sin(x2)dx=20k.00πei(k10)xdxeasynow=π+9k=00π(ei(k10)x)dx+9k=00π(ei(1+k)x)dx=π+9k=0{1i(k10)[ei(k10)π1]+ei(1+k)π1i(1+k)}=π+9k=0(1)k1i(k10)+9k=0(1)k1i(1+k)=π9k=0(1)k1i(1+k)+9k=0(1)k1i(1+k)=π
Commented by jagoll last updated on 25/Mar/20
sir what it formula?
sirwhatitformula?
Commented by mind is power last updated on 26/Mar/20
Formula ?
Formula?
Answered by john santu last updated on 25/Mar/20
I = ∫_0 ^π  ((sin (((21x)/2)))/(sin ((x/2)))) dx,  [ t = (x/2)]  I = 2∫_0 ^(π/2)  ((sin 21t)/(sin t)) dt =   consider G_n  = ∫_0 ^(π/2)  ((sin nt)/(sin t)) dt   then G_(n+2) −G_n  = ∫_0 ^(π/2)  ((sin ((n+2)t)−sin (nt))/(sin t)) dt   = ∫ _0 ^(π/2)  ((sin t cos ((n+1)t))/(sin t)) dt   = ((sin ((((n+1)π)/2)))/(n+1))  G_(n+2)  = G_n + ((sin ((((n+1)π)/2)))/(n+1)) , n≥ 0  when n is odd n = 2k−1  G_(2k+1)  = G_(2k−1)  , k≥ 1  G_(21)  = G_1  = ∫^(π/2) _0 ((sin t)/(sin t)) dt = (π/2)  so that   I = ∫_0 ^π  ((sin (((21x)/2)))/(sin ((x/2)))) dx = 2G_(21)  =2×(π/2)   = π
I=π0sin(21x2)sin(x2)dx,[t=x2]I=2π20sin21tsintdt=considerGn=π20sinntsintdtthenGn+2Gn=π20sin((n+2)t)sin(nt)sintdt=π20sintcos((n+1)t)sintdt=sin((n+1)π2)n+1Gn+2=Gn+sin((n+1)π2)n+1,n0whennisoddn=2k1G2k+1=G2k1,k1G21=G1=0π2sintsintdt=π2sothatI=π0sin(21x2)sin(x2)dx=2G21=2×π2=π

Leave a Reply

Your email address will not be published. Required fields are marked *