Question Number 85677 by john santu last updated on 24/Mar/20

Commented by jagoll last updated on 24/Mar/20

Commented by john santu last updated on 24/Mar/20

Commented by M±th+et£s last updated on 25/Mar/20
![∫_0 ^π ((sin(((21x)/2)))/(sin((x/2))))dx let y=(x/2) ∫_0 ^(π/2) (((sin21y))/(sin(y))) 2dy 2∫_0 ^(π/2) ((sin20y cos(y) + cos20y siny)/(siny))dy 2∫_0 ^(π/2) sin20y coty dy +∫_0 ^(π/2) cos20y dy ∫_0 ^(π/2) cosy dy=0 2∫_0 ^(π/2) sin20y coty dy=2∫_0 ^(π/2) (1+2cos2y+2cos4y+...+cos20y)dy [y+sin2y+(1/2)sin4y+(1/3)sin6y+...]_0 ^(π/2) π+0+.... so ∫_0 ^π ((sin(((21x)/2)))/(sin((x/2))))dx=π](https://www.tinkutara.com/question/Q85844.png)
Answered by mind is power last updated on 24/Mar/20
![Σ_(k=0) ^(20) e^(ikx) =((e^(i10x) sin(((21x)/2)))/(sin((x/2)))) ⇒∫_0 ^π ((sin(((21x)/2)))/(sin((x/2))))dx=Σ_(k.0) ^(20) ∫_0 ^π e^(i(k−10)x) dx easy now =π+Σ_(k=0) ^9 ∫_0 ^π (e^(i(k−10)x) )dx+Σ_(k=0) ^9 ∫_0 ^π (e^(i(1+k)x) )dx =π+Σ_(k=0) ^9 {(1/(i(k−10)))[e^(i(k−10)π) −1]+((e^(i(1+k)π) −1)/(i(1+k)))} =π+Σ_(k=0) ^9 (((−1)^k −1)/(i(k−10)))+Σ_(k=0) ^9 (((−1)^k −1)/(i(1+k))) =π−Σ_(k=0) ^9 (((−1)^k −1)/(i(1+k)))+Σ_(k=0) ^9 (((−1)^k −1)/(i(1+k)))=π](https://www.tinkutara.com/question/Q85765.png)
Commented by jagoll last updated on 25/Mar/20

Commented by mind is power last updated on 26/Mar/20

Answered by john santu last updated on 25/Mar/20
![I = ∫_0 ^π ((sin (((21x)/2)))/(sin ((x/2)))) dx, [ t = (x/2)] I = 2∫_0 ^(π/2) ((sin 21t)/(sin t)) dt = consider G_n = ∫_0 ^(π/2) ((sin nt)/(sin t)) dt then G_(n+2) −G_n = ∫_0 ^(π/2) ((sin ((n+2)t)−sin (nt))/(sin t)) dt = ∫ _0 ^(π/2) ((sin t cos ((n+1)t))/(sin t)) dt = ((sin ((((n+1)π)/2)))/(n+1)) G_(n+2) = G_n + ((sin ((((n+1)π)/2)))/(n+1)) , n≥ 0 when n is odd n = 2k−1 G_(2k+1) = G_(2k−1) , k≥ 1 G_(21) = G_1 = ∫^(π/2) _0 ((sin t)/(sin t)) dt = (π/2) so that I = ∫_0 ^π ((sin (((21x)/2)))/(sin ((x/2)))) dx = 2G_(21) =2×(π/2) = π](https://www.tinkutara.com/question/Q85862.png)